
ODBC and SQL Reference

June, 1999

This manual details ODBC conformance and SQL language support provided by the Dharma
DataLink SDK. It also describes configuration of the ODBC SDK Drivers.

Software Version: Dharma DataLink SDK Version 6.2.1

ii

June, 1999

This draft printed: 09/30/99 9:31 AM

Information in this document is subject to change without notice.

Dharma Systems Inc. shall not be liable for any incidental, direct, special or consequential damages
whatsoever arising out of or relating to this material, even if Dharma Systems Inc. has been advised,
knew or should have known of the possibility of such damages.

The software described in this manual is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms of this agreement. It
is against the law to copy this software on magnetic tape, disk or any other medium for any purpose
other than for backup or archival purposes.

This manual contains information protected by copyright. No part of this manual may be photocopied
or reproduced in any form without prior written consent from Dharma Systems Inc.

Use, duplication, or disclosure whatsoever by the Government shall be expressly subject to restrictions
as set forth in subdivision (b)(3)(ii) for restricted rights in computer software and subdivision (b)(2) for
limited rights in technical data, both as set in 52.227-7013.

© 1987-1999 Dharma Systems, Inc. All rights reserved.

Dharma Systems welcomes your comments on this document and the software it describes. Send
comments to:

Documentation Comments
Dharma Systems, Inc.

436 Amherst St.
Nashua, NH 03063

Phone: 603-886-1400
Fax: 603-883-6904

Electronic Mail: support@dharma.com
Web Page: http://www.dharma.com

DBstore, Dharma/SQL, Dharma/ODBC, Dharma ODBC SDK, Dharma DataLink, and Dharma
Integrator are trademarks of Dharma Systems, Inc.

The following are third-party trademarks:

Microsoft and MS-DOS are registered trademarks, and ODBC, Windows, Windows 95 and Windows
NT are trademarks of Microsoft Corporation.

Oracle is a registered trademark of Oracle Corporation.

Java, Java Development Kit, Solaris, SPARC, SunOS, and SunSoft are trademarks of Sun
Microsystems, Inc.

PowerBuilder is a registered trademark of Powersoft Corporation.

All other trademarks and registered trademarks are the property of their respective holders.

iii

Contents

Preface ... viii

1 Overview

1.1 Introduction ... 1–1

1.2 Desktop Configuration ... 1–2

1.3 Client/Server Configuration... 1–3

2 Configuring ODBC Data Sources

2.1 Confirming Installation .. 2–1

2.2 Adding Names for ODBC Data Sources.. 2–2

2.2.1 Desktop.. 2–2

2.2.2 Client/Server ... 2–3

3 ODBC Driver Conformance

3.1 General ODBC and SQL Support Levels.. 3–1

3.2 Responses to SQLGetInfo... 3–1

3.3 Supported Environment, Connection, and Statement Attributes................................3–17

3.4 Supported ODBC API Functions..3–20

3.5 Supported Data Types..3–22

4 SQL Language Elements

4.1 SQL Features: Lite and Professional Editions... 4–2

4.2 SQL Identifiers... 4–3

4.2.1 Conventional Identifiers... 4–3

4.2.2 Delimited Identifiers .. 4–4

iv

4.3 Data Types... 4–4

4.3.1 Character Data Types ..4–5

4.3.2 Exact Numeric Data Types...4–9

4.3.3 Approximate Numeric Data Types... 4–11

4.3.4 Date-Time Data Types .. 4–11

4.3.5 Bit String Data Types .. 4–12

4.4 Query Expressions..4–13

4.4.1 Inner Joins .. 4–20

4.4.2 Outer Joins.. 4–23

4.5 Search Conditions..4–24

4.5.1 Logical Operators: OR, AND, NOT ... 4–25

4.5.2 Relational Operators ... 4–25

4.5.3 Basic Predicate.. 4–26

4.5.4 Quantified Predicate ... 4–27

4.5.5 BETWEEN Predicate... 4–27

4.5.6 NULL Predicate.. 4–28

4.5.7 CONTAINS Predicate... 4–28

4.5.8 LIKE Predicate... 4–29

4.5.9 EXISTS Predicate.. 4–29

4.5.10 IN Predicate... 4–30

4.5.11 Outer Join Predicate .. 4–30

4.6 Expressions ..4–30

4.6.1 Concatenated Character Expressions.. 4–32

4.6.2 Numeric Arithmetic Expressions.. 4–33

4.6.3 Date Arithmetic Expressions.. 4–33

4.6.4 Conditional Expressions ... 4–35

4.7 Literals...4–35

4.7.1 Numeric Literals... 4–36

4.7.2 Character String Literals.. 4–36

4.7.3 Date-Time Literals.. 4–37

4.8 Date-Time Format Strings...4–40

4.8.1 Date Format Strings ... 4–40

4.8.2 Time Format Strings .. 4–42

4.9 Functions..4–43

4.9.1 Aggregate Functions ... 4–43

v

4.9.2 Scalar Functions ...4–45

5 SQL Statements

5.1 CALL.. 5–2

5.2 CREATE INDEX... 5–3

5.3 CREATE SYNONYM .. 5–5

5.4 CREATE TABLE.. 5–6

5.4.1 Column Constraints .. 5–9

5.4.2 Table Constraints ...5–11

5.5 CREATE VIEW...5–15

5.6 DELETE...5–17

5.7 DROP INDEX ...5–18

5.8 DROP SYNONYM...5–19

5.9 DROP TABLE ..5–20

5.10 DROP VIEW...5–21

5.11 GRANT ..5–22

5.12 INSERT..5–25

5.13 RENAME..5–27

5.14 REVOKE..5–28

5.15 SELECT...5–31

5.15.1 ORDER BY Clause...5–32

5.15.2 FOR UPDATE Clause...5–33

5.16 SET SCHEMA ..5–34

5.17 UPDATE ..5–36

A Server Utility Reference

Overview...A–1

dhdaemon ...A–1

pcntreg..A–3

vi

mdcreate ...A–3

mdsql ..A–4

B Reserved Words

Reserved Keywords ..B–1

C Error Messages

Overview...C–1

Error Codes, SQLSTATE Values, and Messages..C–1

D System Catalog Tables

Overview...D–1

System Catalog Tables Definitions..D–2

E System Limits

Maximum Values.. E–1

Glossary...Glossary–1

Index ..Index–1

Figures
Figure 1–1 Components in the Dharma Desktop ODBC SDK ...1–2

Figure 1–2 Dharma DataLink SDK Client/Server...1–3

Tables
Table 3–1 Information the ODBC Driver Returns to SQLGetInfo...3–2

Table 3–2 Supported Environment, Connection, and Statement Attributes............................. 3–17

Table 3–3 Dharma and Corresponding ODBC Data Types .. 3–22

Table 4–1 SQL Features Supported by Lite and Professional Editions...4–2

Table 4–2 Default ASCII Character Set ...4–7

Table C–1 Error Codes and Messages..C–1

Table D–1 System Catalog Table Definitions...D–2

Table E–1 ODBC Server System Limits .. E–1

vii

viii

Preface

This manual details ODBC conformance and SQL language support provided by the
Dharma DataLink SDK. It also describes configuration of the ODBC SDK Drivers.

Audience

This manual is intended for a variety of audiences that use Dharma DataLink SDK
drivers to access data in proprietary storage systems:

• Administrators who set up access to a proprietary storage system from existing
ODBC applications

• Application programmers writing ODBC applications that will access proprietary
data through the ODBC Driver

Structure

The manual contains the following chapters and appendixes:

Chapter 1 Introduces the ODBC SDK and its components.

Chapter 2 Describes configuring data sources to use ODBC SDK drivers.

Chapter 3 Details the ODBC Driver's support for the ODBC standard, including
information it returns to the SQLGetInfo call, and which ODBC API
calls it supports.

Chapter 4 Describes language elements common to many SQL statements.

Chapter 5 Provides detailed reference material on each SQL statement, in
alphabetic order.

Appendix A Provides reference material on utilities used in ODBC Server
administration.

Appendix B Lists reserved words.

Appendix C Lists error messages.

Appendix D Summarizes the tables in the data dictionary.

Appendix E Lists the maximum sizes for various attributes of the ODBC Server
environment.

ix

Conventions

Syntax diagrams appear in helvetica type and use the following conventions:

UPPERCASE Uppercase type denotes reserved words. You must
include reserved words in statements, but they can be
upper or lower case.

lowercase Lowercase type denotes either user-supplied elements
or names of other syntax diagrams. User-supplied
elements include names of tables, host-language
variables, expressions, and literals. Syntax diagrams
can refer to each other by name. If a diagram is named,
the name appears in lowercase type above and to the
left of the diagram, followed by a double-colon (for
example, privilege ::). The name of that diagram
appears in lowercase in diagrams that refer to it.

{ } Braces denote a choice among mandatory elements.
They enclose a set of options, separated by vertical bars
(|). You must choose at least one of the options.

[] Brackets denote an optional element or a choice among
optional elements.

| Vertical bars separate a set of options.

... A horizontal ellipsis denotes that the preceding
element can optionally be repeated any number of
times.

() , ; Parentheses and other punctuation marks are required
elements. Enter them as shown in syntax diagrams.

For More information

Microsoft ODBC Programmer’s
Reference, Version 3.0

Describes the ODBC interface, its features, and how
applications use it.

Overview 1–1

1
Overview

1.1 Introduction

The Dharma DataLink SDK allows users to access proprietary storage systems through
the Open Database Connectivity (ODBC) interface.

The ODBC SDK supports two different configurations for different network
environments.

• The ODBC SDK Desktop configuration implements a “single-tier” ODBC
architecture where the ODBC tool, the Dharma DataLink Desktop Driver, and the
proprietary data all reside on the same Windows 95, Windows 98, or NT computer.

• The ODBC SDK Client/Server configuration provides network access to your
proprietary data. The ODBC tool and the Dharma DataLink driver run on Windows
or UNIX clients, while the ODBC SDK server library runs on the UNIX or NT server
hosting the proprietary storage system.

This manual describes how to add data sources for both configurations (Chapter 2), and
provides detailed reference material about the ODBC and SQL support they offer
(Chapters 3, 4, and 5).

What is ODBC?

The ODBC interface enables Windows applications to access data from a variety of data
sources while insulating the applications from differences between them. The ODBC
standard specifies two major components:

• A library of function calls that allows applications to connect with a database
system and issue requests. Chapter 3 details Dharma DataLink support.

• Syntax for Structured Query Language (SQL) statements, based on existing
standards. Chapters 4 and 5 provide detailed reference material about the SQL
interface to the ODBC SDK.

Desktop Configuration

1–2 Overview

1.2 Desktop Configuration

With Dharma DataLink SDK Desktop, all components reside on a single computer.

Application
An ODBC application can be any program that calls ODBC functions and uses them to
issue SQL statements. Vendors of Windows-based tools typically include ODBC
capabilities with their software. Tools such as PowerBuilder™, Visual Basic™, and
Web tools all can use ODBC for data access.

ODBC Driver Manager
The ODBC driver manager is a Microsoft-supplied program that routes calls from an
application to the appropriate ODBC driver for a data source. To an application, the
ODBC driver manager and a driver are a single entity that process requests to a
particular data source.

Dharma DataLink Desktop Driver
The Desktop Driver processes ODBC function calls from applications that need to access
the proprietary storage system. The driver translates the standard SQL statements into
syntax the data source can process, retrieves the requested data from the proprietary
storage system, and returns data to the application.

The Dharma DataLink Desktop Driver runs on Windows 95, Windows 98, and
Windows NT. It is compatible with Version 3.0 of the Microsoft ODBC standard. It
supports all Core and Level 1 API functions, and all Level 2 functions required by
Windows and Web tools.

Figure 1–1 shows how these components work together to provide access to proprietary
data.

Figure 1–1 Components in the Dharma Desktop ODBC SDK

Any Proprietary
Database

Microsoft QueryVisual BasicPowerBuilder

ODBC Driver Manager

Dharma ODBC
Desktop Driver

Client/Server Configuration

Overview 1–3

1.3 Client/Server Configuration

With Dharma DataLink SDK Client/Server, there are components on two separate
computers. The client is the system where the ODBC application runs. The server is
the system that contains the proprietary storage system.

With the client/server configuration, the functions performed by the ODBC Desktop
Driver are separated into two components, the ODBC Driver and the ODBC Server:

• The ODBC Driver processes ODBC function calls from applications that request
data from the proprietary storage system. The driver connects to the ODBC Server,
translates the standard SQL statements into syntax the data source can process,
and returns data to the application.

The Dharma DataLink Driver runs on Windows clients. It is compatible with
Version 3.0 of the Microsoft ODBC standard. It supports all Core and Level 1 API
functions, and all Level 2 functions required by Windows and Web tools.

• The Dharma DataLink Server runs on the server hosting the proprietary storage
system. It receives requests from the ODBC Driver, processes them, and retrieves the
requested data from the proprietary storage system.

Figure 1–2 shows how these components work together to provide access to proprietary
data.

Figure 1–2 Dharma DataLink SDK Client/Server

Any Proprietary
Database

Dharma
ODBC Server

Microsoft QueryVisual BasicPowerBuilder

Server SideClient Side

ODBC Driver Manager

Dharma
ODBC Driver

Configuring ODBC Data Sources 2–1

2
Configuring ODBC Data Sources

This chapter describes how to add ODBC data sources that provide access to a
proprietary storage system.

2.1 Confirming Installation

This chapter assumes that the Dharma DataLink SDK drivers have already been
installed in your environment.

Refer to information for your proprietary storage system for details on setting up the
ODBC SDK in your environment. The following steps may be completed as part of a
setup program, or you may have to perform them yourself:

Desktop
• Install the necessary executable files, scripts and initialization file for the ODBC

Desktop executable.

• Create a data dictionary and, if necessary, load it with SQL metadata that describe
tables and indexes in the proprietary storage system.

Client/Server
• On the server system, install components for the ODBC Server.

• On the server system, create the sqlnw service name and associate it with a port
number.

• On the server system, start the dhdaemon server process.

• On the server system, create a data dictionary and, if necessary, load it with SQL
metadata that describe tables and indexes in the proprietary storage system.

• On the client system, install the ODBC Driver

• On the client system, create the sqlnw service name and associate it with the same
port number as specified on the server.

Adding Names for ODBC Data Sources

2–2 Configuring ODBC Data Sources

2.2 Adding Names for ODBC Data Sources

The ODBC Administrator is a Microsoft utility to configure ODBC data sources and
drivers.

All the information an application needs to connect to a particular database is called a
data source in ODBC terminology. This information includes the driver name and
location, network address, network software, and database name. Depending on the
version of Windows, the ODBC Administrator stores data source information in text files
or in the system registry.

The ODBC Administrator lets you enter the connection details for accessing a
Dharma/SQL database and associate it with a data source name that users refer to
when they need to access the data through an ODBC application.

2.2.1 Desktop
Use the Microsoft ODBC Administrator utility to add names of specific data sources you
want to access.

1. Invoke the Microsoft ODBC Administrator from Windows (by default, from the
Control Panel program group). The Administrator's Data Sources dialog box
appears.

2. Click on the System DSN tab. A list of existing system data sources appears.

3. Click on the Add… button. The Add Data Source dialog box appears.

4. In the list box, double-click on the Dharma Desktop SDK driver. The Dharma
ODBC Setup dialog box appears.

5. Enter information in the following text boxes:

• Data Source Name: the name of the ODBC data source for use in ODBC
connect calls and by the ODBC Administrator.

• Description: an optional descriptive string.

• Host: this field is ignored for the Desktop configuration.

• Database: the database name. Use the same name here that was specified to
the mdcreate utility (see page A-3) to create the data dictionary for the proprietary
storage system.

• User ID: the user name for the process.

• Password: the password for the process.

• Data Dir: the location of the data dictionary directory. Leave this field blank
unless the mdcreate command used the -d argument. (If it did, specify the same
value here as that used in the -d argument.)

Adding Names for ODBC Data Sources

Configuring ODBC Data Sources 2–3

You must supply the name of the data source. If you omit the database name, user name,
or password, the driver prompts the ODBC application user for that information when it
connects to the data source.

2.2.2 Client/Server
Use the Microsoft ODBC Administrator utility to add the names of any Dharma
DataLink server data sources the ODBC Driver will connect to:

1. Invoke the Microsoft ODBC Administrator from Windows (by default, from the
Control Panel program group). The Administrator's Data Sources dialog box
appears.

2. Click on the System DSN tab. A list of existing system data sources appears.

3. Click on the Add... button. The Create New Data Source dialog box
appears.

4. In the Installed ODBC Drivers list box, double-click on the Dharma ODBC
SDK driver. The Dharma ODBC Setup dialog box appears.

5. Enter information in the following text boxes:

• Data Source Name: a local name for the Dharma DataLink server data
source for use in ODBC connect calls and by the ODBC Administrator.

• Description: an optional descriptive string

• Host: the name of the system where the Dharma DataLink server data source
resides

• Database: the database for the process to connect to on the host system. Use
the same name here that was specified to the mdcreate utility (see page B-3) to
create the data dictionary for the proprietary storage system.

• User ID: the user name for the process

• Password: the password for the process

• Service: the service name used by the server. Leave this field blank unless
the dhdaemon server process was started using the command line and the
command specified the -s argument (see page A-2). (If it did, specify the same
value here as that used in the -s argument.)

You must supply the name of the data source. If you omit the host name, database name,
user name, or password, the driver prompts the ODBC application user for that
information when it connects to the data source.

The ODBC Administrator utility updates the ODBC Driver manager registry entry with
the information supplied in the dialog box.

ODBC Driver Conformance 3–1

3
ODBC Driver Conformance

3.1 General ODBC and SQL Support Levels

This chapter details the ODBC functionality the Dharma DataLink SDK supports
through the ODBC Driver. ODBC specifies general conformance levels in two areas:

• ODBC application programming interface (API). Dharma supports all Core and
Level 1 ODBC API functions, and most Level 2 functions.

• ODBC SQL syntax. Dharma supports Extended SQL syntax.

This chapter details the information the Dharma DataLink SDK driver returns when
applications call the following functions:

• SQLGetInfo returns various details about the driver and its data source

• SQLGetEnvAttr, SQLGetConnectAttr, SQLGetStmtAttr return attributes of driver
behavior

• SQLGetFunctions returns ODBC functions the driver supports

• SQLGetTypeInfo returns data types the driver supports

3.2 Responses to SQLGetInfo

Applications call the SQLGetInfo function to retrieve details about support a specific
driver and data source provide for different ODBC functionality.

Applications supply the InfoType argument to SQLGetInfo to specify what information
type they seek. SQLGetInfo returns the information to the InfoValuePtr output argument.
Table 3–1 lists each InfoType argument the ODBC Driver recognizes along with the
associated value returned to SQLGetInfo. Shaded rows indicate information types
renamed or deprecated for ODBC 3.0.

For more detail about the SQLGetInfo function see the Microsoft ODBC Programmer’s
Reference.

Responses to SQLGetInfo

3–2 ODBC Driver Conformance

Table 3–1 Information the ODBC Driver Returns to SQLGetInfo

Description InfoType Argument Returns

Shaded rows indicate information types renamed or deprecated for ODBC 3.0

Guaranteed execute privileges
on all procedures returned by
SQLProcedures

SQL_ACCESSIBLE_PROCEDURES Y (guaranteed)

Guaranteed read access to all
table names returned by
SQLTables

SQL_ACCESSIBLE_TABLES N (not guaranteed)

Maximum number of active
connections

SQL_ACTIVE_CONNECTIONS (Renamed
for ODBC 3.0.)

See SQL_MAX_DRIVER_CONNECTIONS

Maximum number of active
environments

SQL_ACTIVE_ENVIRONMENTS
(ODBC 3.0)

0 (no limit)

Maximum number of active
SQL statements

SQL_ACTIVE_STATEMENTS
(Renamed for ODBC 3.0.)

See SQL_MAX_CONCURRENT_ACTIVITIES

Aggregate function support SQL_AGGREGATE_FUNCTIONS
(ODBC 3.0)

SQL_AF_ALL | SQL_AF_AVG |
SQL_AF_COUNT |
SQL_AF_DISTINCT | SQL_AF_MAX |
SQL_AF_MIN | SQL_AF_SUM

Support for ALTER
DOMAIN statement

SQL_ALTER_DOMAIN
(ODBC 3.0)

0 (does not support)

Support for ALTER
SCHEMA statement

SQL_ALTER_SCHEMA
(ODBC 3.0)

0 (does not support)

Support for ALTER TABLE
clauses

SQL_ALTER_TABLE SQL_AT_ADD_COLUMN (supports
adding columns)

Level of asynchronous mode
support

SQL_ASYNC_MODE
(ODBC 3.0)

SQL_AM_NONE (not supported)

Behavior with respect to the
availability of row counts in
batches

SQL_BATCH_ROW_COUNT
(ODBC 3.0)

0 (does not support)

Support for batches SQL_BATCH_SUPPORT
(ODBC 3.0)

SQL_BS_ROW_COUNT_EXPLICIT
(supports explicit batches with row-
count generating statements)

Support for bookmarks SQL_BOOKMARK_PERSISTENCE 0 (does not support)

Position of qualifier in a
qualified table name

SQL_CATALOG_LOCATION
(Renamed for ODBC 3.0. Was
SQL_QUALIFIER_LOCATION)

SQL_QL_START (at the start of the name)

Support for catalog names SQL_CATALOG_NAME
(ODBC 3.0)

N (does not support)

Character used to separate
table, column qualifiers

SQL_CATALOG_NAME_SEPARATOR
(Renamed for ODBC 3.0. Was
SQL_QUALIFIER_NAME_SEPARATOR)

. (period)

Name for a catalog SQL_CATALOG_TERM
(Renamed for ODBC 3.0. Was
SQL_QUALIFIER_TERM)

"" (does not support)

Responses to SQLGetInfo

ODBC Driver Conformance 3–3

Description InfoType Argument Returns

Statements that support
catalog names

SQL_CATALOG_USAGE
(Renamed for ODBC 3.0. Was
SQL_QUALIFIER_USAGE)

0 (does not support)

Default collation sequence
name for the default
character set

SQL_COLLATION_SEQ
(ODBC 3.0)

“ ” (unknown)

Support for column aliases SQL_COLUMN_ALIAS Y (supports)

Result of concatenation of
NULL character column with
non-NULL column

SQL_CONCAT_NULL_BEHAVIOR SQL_CB_NULL (result is null)

Conversion from BIGINT SQL_CONVERT_BIGINT SQL_CVT_CHAR|
SQL_CVT_NUMERIC|
SQL_CVT_TINYINT|
SQL_CVT_SMALLINT|
SQL_CVT_INTEGER|
SQL_CVT_FLOAT|
SQL_CVT_DOUBLE|
SQL_CVT_BIT

Conversion from BINARY SQL_CONVERT_BINARY SQL_CVT_CHAR |
SQL_CVT_BINARY

Conversion from BIT SQL_CONVERT_BIT SQL_CVT_CHAR |
SQL_CVT_NUMERIC |
SQL_CVT_BIT |
SQL_CVT_TINYINT |
SQL_CVT_SMALLINT |
SQL_CVT_BIGINT |
SQL_CVT_INTEGER |
SQL_CVT_FLOAT |
SQL_CVT_REAL

Conversion from CHAR SQL_CONVERT_CHAR SQL_CVT_BIT |
SQL_CVT_BINARY |
SQL_CVT_NUMERIC |
SQL_CVT_TINYINT |
SQL_CVT_SMALLINT |
SQL_CVT_BIGINT |
SQL_CVT_DATE |
SQL_CVT_FLOAT |
SQL_CVT_TIME |
SQL_CVT_TIMESTAMP |
SQL_CVT_CHAR

Conversion from DATE SQL_CONVERT_DATE SQL_CVT_CHAR |
SQL_CVT_DATE |
SQL_CVT_TIMESTAMP

Conversion from DECIMAL SQL_CONVERT_DECIMAL 0 (does not support)

Conversion from DOUBLE SQL_CONVERT_DOUBLE 0 (does not support)

Responses to SQLGetInfo

3–4 ODBC Driver Conformance

Description InfoType Argument Returns

Conversion from FLOAT SQL_CONVERT_FLOAT SQL_CVT_CHAR |
SQL_CVT_NUMERIC |
SQL_CVT_BIT |
SQL_CVT_TINYINT |
SQL_CVT_SMALLINT |
SQL_CVT_BIGINT |
SQL_CVT_INTEGER |
SQL_CVT_FLOAT |
SQL_CVT_REAL

Support for conversion
functions

SQL_CONVERT_FUNCTIONS SQL_FN_CVT_CONVERT (supports)

Conversion from INTEGER SQL_CONVERT_INTEGER SQL_CVT_CHAR |
SQL_CVT_NUMERIC |
SQL_CVT_BIT |
SQL_CVT_TINYINT |
SQL_CVT_SMALLINT |
SQL_CVT_BIGINT |
SQL_CVT_INTEGER |
SQL_CVT_FLOAT |
SQL_CVT_REAL

Conversion from
INTERVAL_DAY_TIME

SQL_CONVERT_INTERVAL_DAY_TIME
(ODBC 3.0)

0 (does not support)

Conversion from
INTERVAL_YEAR_MONTH

SQL_CONVERT_INTERVAL_YEAR_MONTH
(ODBC 3.0)

0 (does not support)

Conversion from
LONGVARBINARY

SQL_CONVERT_LONGVARBINARY 0 (does not support)

Conversion from
LONGVARCHAR

SQL_CONVERT_LONGVARCHAR 0 (does not support)

Conversion from NUMERIC SQL_CONVERT_NUMERIC SQL_CVT_CHAR |
SQL_CVT_INTEGER |
SQL_CVT_FLOAT |
SQL_CVT_REAL |
SQL_CVT_BIT |
SQL_CVT_TINYINT |
SQL_CVT_SMALLINT |
SQL_CVT_BIGINT

Conversion from REAL SQL_CONVERT_REAL SQL_CVT_CHAR |
SQL_CVT_NUMERIC |
SQL_CVT_BIT |
SQL_CVT_TINYINT |
SQL_CVT_SMALLINT |
SQL_CVT_BIGINT |
SQL_CVT_INTEGER |
SQL_CVT_FLOAT |
SQL_CVT_DOUBLE

Responses to SQLGetInfo

ODBC Driver Conformance 3–5

Description InfoType Argument Returns

Conversion from SMALLINT SQL_CONVERT_SMALLINT SQL_CVT_CHAR |
SQL_CVT_NUMERIC |
SQL_CVT_INTEGER |
SQL_CVT_BIGINT |
SQL_CVT_FLOAT |
SQL_CVT_DOUBLE |
SQL_CVT_TINYINT |
SQL_CVT_SMALLINT |
SQL_CVT_NUMERIC |
SQL_CVT_BIT

Conversion from TIME SQL_CONVERT_TIME SQL_CVT_CHAR |
SQL_CVT_TIME |
SQL_CVT_TIMESTAMP

Conversion from TIMESTAMP SQL_CONVERT_TIMESTAMP SQL_CVT_CHAR |
SQL_CVT_DATE

Conversion from TINYINT SQL_CONVERT_TINYINT SQL_CVT_CHAR |
SQL_CVT_NUMERIC |
SQL_CVT_BIT |
SQL_CVT_SMALLINT |
SQL_CVT_INTEGER |
SQL_CVT_BIGINT |
SQL_CVT_FLOAT |
SQL_CVT_DOUBLE |
SQL_CVT_TINYINT

Conversion from VARBINARY SQL_CONVERT_VARBINARY 0 (does not support)

Conversion from VARCHAR SQL_CONVERT_VARCHAR 0 (does not support)

Support for table correlation
names

SQL_CORRELATION_NAME SQL_CN_DIFFERENT (supports, but
correlation names must be different from
table name)

Support for CREATE
ASSERTION statement

SQL_CREATE_ASSERTION
(ODBC 3.0)

0 (does not support)

Support for CREATE
CHARACTER SET statement

SQL_CREATE_CHARACTER_SET
(ODBC 3.0)

0 (does not support)

Support for CREATE
COLLATION statement

SQL_CREATE_COLLATION
(ODBC 3.0)

0 (does not support)

Support for CREATE
DOMAIN statement

SQL_CREATE_DOMAIN
(ODBC 3.0)

0 (does not support)

Support for CREATE
SCHEMA statement

SQL_CREATE_SCHEMA
(ODBC 3.0)

0 (does not support)

Support for CREATE TABLE
statement

SQL_CREATE_TABLE
(ODBC 3.0)

SQL_CT_CREATE_TABLE |
SQL_CT_COMMIT_DELETE |
SQL_CT_COLUMN_CONSTRAINT |
SQL_CT_TABLE_CONSTRAINT
(supports CREATE TABLE, deleted rows
are deleted on commit, supports column
constraints and table constraints)

Responses to SQLGetInfo

3–6 ODBC Driver Conformance

Description InfoType Argument Returns

Support for CREATE
TRANSLATION statement

SQL_CREATE_TRANSLATION
(ODBC 3.0)

0 (does not support)

Support for CREATE VIEW
statement

SQL_CREATE_VIEW
(ODBC 3.0)

SQL_CV_CREATE_VIEW |
SQL_CV_CHECK_OPTION (supports
CREATE VIEW, CHECK OPTION
clause)

Effect of COMMIT operation
on cursors and prepared
statements

SQL_CURSOR_COMMIT_BEHAVIOR SQL_CB_CLOSE (closes cursors but
statements remain in prepared state)

Effect of ROLLBACK
operation on cursors and
prepared statements

SQL_CURSOR_ROLLBACK_BEHAVIOR SQL_CB_CLOSE (closes cursors but
statements remain in prepared state)

Support for cursor sensitivity SQL_CURSOR_SENSITIVITY
(ODBC 3.0)

SQL_INSENSITIVE (all cursors on the
statement handle show the result set
without reflecting any changes made to it
by any other cursor within the same
transaction)

Name of the data source as
specified to the ODBC
Administrator

SQL_DATA_SOURCE_NAME (string containing the name)

Access limited to read-only SQL_DATA_SOURCE_READ_ONLY N (read-write access)

Name of the Dharma/SQL
data source on the server
system

SQL_DATABASE_NAME (string containing the name)

Support for date-time literals SQL_DATETIME_LITERALS
(ODBC 3.0)

SQL_DL_SQL92_DATE |
SQL_DL_SQL92_TIME |
SQL_DL_SQL92_TIMESTAMP

Name of the database product
supporting the data source

SQL_DBMS_NAME Dharma/SQL

Version of the database
product

SQL_DBMS_VER 6.2.1

Support for creation and
dropping of indexes

SQL_DDL_INDEX
(ODBC 3.0)

SQL_DI_CREATE_INDEX |
SQL_DI_DROP_INDEX (supports)

Default transaction isolation
level

SQL_DEFAULT_TXN_ISOLATION SQL_TXN_SERIALIZABLE

Suppport for describing
parameters via DESCRIBE
INPUT statement

SQL_DESCRIBE_PARAMETER
(ODBC 3.0)

Y (supports)

Name of the dynamic link
library file for the ODBC Driver

SQL_DRIVER_NAME DHODBC.DLL

Supported ODBC version SQL_DRIVER_ODBC_VER 03.00

Current Version of the ODBC
Driver

SQL_DRIVER_VER 06.20.1000

Responses to SQLGetInfo

ODBC Driver Conformance 3–7

Description InfoType Argument Returns

Support for DROP
ASSERTION statement

SQL_DROP_ASSERTION
(ODBC 3.0)

0 (does not support)

Support for DROP
CHARACTER SET statement

SQL_DROP_CHARACTER_SET
(ODBC 3.0)

0 (does not support)

Support for DROP
COLLATION statement

SQL_DROP_COLLATION
(ODBC 3.0)

0 (does not support)

Support for DROP DOMAIN
statement

SQL_DROP_DOMAIN
(ODBC 3.0)

0 (does not support)

Support for DROP SCHEMA
statement

SQL_DROP_SCHEMA
(ODBC 3.0)

0 (does not support)

Support for DROP TABLE
statement

SQL_DROP_TABLE
(ODBC 3.0)

SQL_DT_DROP_TABLE (supports)

Support for DROP
TRANSLATION statement

SQL_DROP_TRANSLATION
(ODBC 3.0)

0 (does not support)

Support for DROP VIEW
statement

SQL_DROP_VIEW
(ODBC 3.0)

SQL_DT_DROP_VIEW (supports)

Supported attributes of a
dynamic cursor: subset 1

SQL_DYNAMIC_CURSOR_ATTRIBUTES1
(ODBC 3.0)

0 (does not support dynamic cursors)

Supported attributes of a
dynamic cursor: subset 2

SQL_DYNAMIC_CURSOR_ATTRIBUTES2
(ODBC 3.0)

0 (does not support dynamic cursors)

Support for expressions in
ORDER BY clause

SQL_EXPRESSIONS_IN_ORDERBY Y (supports)

Direction that FETCH
operations can support

SQL_FETCH_DIRECTION
(Deprecated in ODBC 3.0.)

SQL_FD_FETCH_NEXT (fetch next row
only)

Single-tier driver behavior SQL_FILE_USAGE SQL_FILE_NOT_SUPPORTED (not a
single-tier driver)

Supported attributes of a
forward-only cursor: subset 1

SQL_FORWARD_ONLY_CURSOR_
ATTRIBUTES1
(ODBC 3.0)

SQL_CA1_NEXT (supports
SQL_FETCH_NEXT argument to
SQLFetchScroll for forward-only cursors)

Supported attributes of a
forward-only cursor: subset 2

SQL_FORWARD_ONLY_CURSOR_
ATTRIBUTES2
(ODBC 3.0)

SQL_CA2_READ_ONLY_CONCURREN
CY

Supported extensions to
SQLGetData

SQL_GETDATA_EXTENSIONS 0 (does not support)

Relationship between GROUP
BY clause and columns in the
select list

SQL_GROUP_BY SQL_GB_GROUP_BY_CONTAINS_SELEC
T (GROUP BY clause must contain all non-
aggregated columns in select list)

Case-sensitivity of user-
supplied names

SQL_IDENTIFIER_CASE SQL_IC_LOWER (case insensitive, stored
in lower case)

Character used to enclose
delimited identifiers

SQL_IDENTIFIER_QUOTE_CHAR " (double quotation mark)

Supported views in
INFORMATION_SCHEMA

SQL_INFO_SCHEMA_VIEWS
(ODBC 3.0)

0 (does not support)

Responses to SQLGetInfo

3–8 ODBC Driver Conformance

Description InfoType Argument Returns

Support for INSERT
statement

SQL_INSERT_STATEMENT
(ODBC 3.0)

SQL_IS_INSERT_LITERALS |
SQL_IS_INSERT_SEARCHED |
SQL_IS_SELECT_INTO

Referential integrity syntax
support

SQL_INTEGRITY
(Renamed for ODBC 3.0. Was
SQL_ODBC_SQL_OPT_IEF)

Y (supports referential integrity syntax)

Supported attributes of a
keyset cursor: subset 1

SQL_KEYSET_CURSOR_ATTRIBUTES1
(ODBC 3.0)

0 (does not support keyset cursors)

Supported attributes of a
keyset cursor: subset 2

SQL_KEYSET_CURSOR_ATTRIBUTES2
(ODBC 3.0)

0 (does not support keyset cursors)

Data-source specific keywords SQL_KEYWORDS absolute, action, add, all, allocate, and,any, are, as, asc,
assertion, at, authorization, alter, avg, atta, begin, between,
bit_length, bigint, bitstrig, binary, bit, both, by, cascade, cascaded,
call, case, cast, catalog, char, character, char_length,
character_length, check, close, cluster, coalesce, collate, collation,
column, colroup_kw, colon, comma, commit, compress, concat,
connect, connection, constraint, constraint_kw, constraints,
continue, convert, corresponding, count, crete, cross, current,
current_date, current_time, current_timestamp, current_user,
cursor, database, datapages, date, day, deallocate, dec, decimal,
declare, default, default_kw, deferrable, deferred, deinition,
delete, describe, delete_kw, desc, describe, descriptor, diagnostics,
disconnect, distint, div, domain, double, drop, dot, dh_f64_t,
dba, end, else, end, end-exec, eqtok, escape, except, exception,
exclusiv, exec, execute, exists, external, extract, false, fetch,
file_kw, first, float, dh_f32_t, for, foreign, foreign_kw, fortran,
found, from, full, e_tok, gt_tok, get, global, go, goto, grant,
group, hash, having, hour, identified, identifier, identity,
immediate, in, in_kw, include, index, indicator, inexpages,
initially, inner, input, insensitive, insert, int, integer, intersect,
interval, into, is, isolation, join, key, key_kw, language, last,
leading, left, level, le_tok, like, lin , lt_tok, local, lock, log,
long_kw, lower, lvarbinary, lvarchar, lpar, match, max, max_kw,
min, min_kw, minu, minute , modify, mode, module, money,
month, names, national, natural, nchar, ne_tok, next, no,
nocompress, none, not, null, null_kw, nullif, number, numeric,
nowait, octet_length, of, on,only, open, option, or, order, outer,
outer_join, output, overlaps, pad, partial, pascal, pctfree, plus,
position, precision, prepare, preserve, primary, primary_kw,
prior, privileges, public, question, raw, read, real, realnumber,
references, references_kw, relative, rename, resource, restrict,
revoke, right, rollback, rows, rowid, rownum, rpar, schema, scroll,
second, select, session, session_user, set, set_minus, share, size,
smallint, some, space, sql, sqlca, sqlcode, sqlerror, sqlstate,
sqlwarning, star, storage_manager, store_in_dharma, statistics,
sring, substring, sum, synonym, sysdate, system_user, systime,
systimestamp, table, temporary, then, time, timestamp,
timezone_hour, timezone_minute, tinyint, to, trailing, transaction,
trim, true, uid, union, unique, unknown, update, upper, usage,
user, using, value, values, varbinary, varchar, varying, view,
when, whenever, where, with, work, write, year, zone, ascade,
odbcec, odbcet, odbcone, coment, odbces, odbcset

Responses to SQLGetInfo

ODBC Driver Conformance 3–9

Description InfoType Argument Returns

Support for escape clause in
LIKE predicates

SQL_LIKE_ESCAPE_CLAUSE Y (supports)

Supported lock types SQL_LOCK_TYPES
(Deprecated in ODBC 3.0.)

0 (does not support)

Maximum number of active
concurrent statements in
asynchronous mode

SQL_MAX_ASYNC_CONCURRENT_
STATEMENTS
(ODBC 3.0)

0 (no limit)

Maximum length in
hexadecimal characters of
binary literals

SQL_MAX_BINARY_LITERAL_LEN 2000

Maximum length of a table or
column qualifier

SQL_MAX_CATALOG_NAME_LEN
(Renamed for ODBC 3.0. Was
SQL_MAX_QUALIFIER_NAME_LEN)

0 (does not support)

Maximum length in characters
of character string literals

SQL_MAX_CHAR_LITERAL_LEN 2000

Maximum length of a column
name

SQL_MAX_COLUMN_NAME_LEN 32

Maximum number of columns
allowed in GROUP BY clause

SQL_MAX_COLUMNS_IN_GROUP_BY 0 (no limit)

Maximum number of columns
allowed in an index

SQL_MAX_COLUMNS_IN_INDEX 100

Maximum number of columns
allowed in ORDER BY clause

SQL_MAX_COLUMNS_IN_ORDER_BY 0 (no limit)

Maximum number of columns
allowed in a select list

SQL_MAX_COLUMNS_IN_SELECT 0 (no limit)

Maximum number of columns
allowed in a table

SQL_MAX_COLUMNS_IN_TABLE 500

Maximum number of active
SQL statements

SQL_MAX_CONCURRENT_ACTIVITIES(R
enamed for ODBC 3.0. Was
SQL_ACTIVE_STATEMENTS)

0 (no maximum)

Maximum length of a cursor
name

SQL_MAX_CURSOR_NAME_LEN 32

Maximum number of active
connections

SQL_MAX_DRIVER_CONNECTIONS
(Renamed for ODBC 3.0. Was
SQL_ACTIVE_CONNECTIONS)

10

Maximum length of user-
defined names

SQL_MAX_IDENTIFIER_LEN
(ODBC 3.0)

32

Maximum number of bytes
allowed in the combined fields
of an index

SQL_MAX_INDEX_SIZE 0 (no limit)

Maximum length of an owner
name

SQL_MAX_OWNER_NAME_LEN
(Renamed for ODBC 3.0.)

See SQL_MAX_SCHEMA_NAME_LEN

Maximum length of a
procedure name

SQL_MAX_PROCEDURE_NAME_LEN 32

Responses to SQLGetInfo

3–10 ODBC Driver Conformance

Description InfoType Argument Returns

Maximum length of a table or
column qualifier

SQL_MAX_QUALIFIER_NAME_LEN
(Renamed for ODBC 3.0.)

See SQL_MAX_CATALOG_NAME_LEN

Maximum length in bytes of a
table row

SQL_MAX_ROW_SIZE 0 (no limit)

Whether maximum row size
includes LONGVARCHAR
and LONGVARBINARY

SQL_MAX_ROW_SIZE_INCLUDES_LONG Y

Maximum length of an owner
name

SQL_MAX_SCHEMA_NAME_LEN
(Renamed for ODBC 3.0. Was
SQL_MAX_OWNER_NAME_LEN)

32

Maximum number of
characters in a SQL statement

SQL_MAX_STATEMENT_LEN 25000

Maximum length of a table
name

SQL_MAX_TABLE_NAME_LEN 32

Maximum number of tables
allowed in FROM clause

SQL_MAX_TABLES_IN_SELECT 250

Maximum length of a user
name

SQL_MAX_USER_NAME_LEN 32

Support for multiple result
sets

SQL_MULT_RESULT_SETS N (does not support)

Support for active transactions
on multiple connections

SQL_MULTIPLE_ACTIVE_TXN Y (supports)

Whether data source requires
length of LONGVARCHAR
and LONGVARBINARY data

SQL_NEED_LONG_DATA_LEN N

Support for NOT NULL clause
in CREATE TABLE statement

SQL_NON_NULLABLE_COLUMNS SQL_NNC_NON_NULL (supports)

Where null values are sorted in
a list

SQL_NULL_COLLATION SQL_NC_LOW (sorted at the low end of
the list)

Responses to SQLGetInfo

ODBC Driver Conformance 3–11

Description InfoType Argument Returns

Numeric functions supported SQL_NUMERIC_FUNCTIONS SQL_FN_NUM_ABS |
SQL_FN_NUM_ACOS |
SQL_FN_NUM_ASIN |
SQL_FN_NUM_ATAN |
SQL_FN_NUM_ATAN2 |
SQL_FN_NUM_CEILING |
SQL_FN_NUM_COS |
SQL_FN_NUM_DEGREES |
SQL_FN_NUM_EXP |
SQL_FN_NUM_FLOOR |
SQL_FN_NUM_LOG10 |
SQL_FN_NUM_LOG |
SQL_FN_NUM_MOD |
SQL_FN_NUM_PI |
SQL_FN_NUM_POWER |
SQL_FN_NUM_RADIANS |
SQL_FN_NUM_RAND |
SQL_FN_NUM_SIGN |
SQL_FN_NUM_SIN |
SQL_FN_NUM_SQRT |
SQL_FN_NUM_TAN (bit masks specifying
support for indicated functions)

ODBC API conformance level SQL_ODBC_API_CONFORMANCE
(Deprecated in ODBC 3.0.)

SQL_OAC_LEVEL1 (supports level 1)

SQL Access Group (SAG)
conformance

SQL_ODBC_SAG_CLI_CONFORMANCE SQL_OSCC_COMPLIANT (complies with
SAG CLI specification)

ODBC SQL syntax
conformance

SQL_ODBC_SQL_CONFORMANCE
(Deprecated in ODBC 3.0.)

SQL_OSC_EXTENDED (supports
extended SQL syntax as defined by ODBC)

Referential integrity syntax
support

SQL_ODBC_SQL_OPT_IEF
(Renamed for ODBC 3.0.)

See SQL_INTEGRITY

ODBC version supported by
driver manager

SQL_ODBC_VER Returned by ODBC driver manager

Whether columns in ORDER
BY clause must also be in
select list

SQL_ORDER_BY_COLUMNS_IN_SELECT N

Support for outer joins SQL_OUTER_JOINS Y (supports)

Term for entity that has owner
privileges on objects

SQL_OWNER_TERM
(Renamed for ODBC 3.0.)

See SQL_SCHEMA_TERM

Statements that support use of
owner qualifiers

SQL_OWNER_USAGE
(Renamed for ODBC 3.0.)

See SQL_SCHEMA_USAGE

Characteristics of row counts
available in a parameterized
execution

SQL_PARAM_ARRAY_ROW_COUNTS
(ODBC 3.0)

SQL_PARC_NO_BATCH (only one row
count available, which is the cumulative
row count resulting from the execution of
the statement for the entire array of
parameters)

Characteristics of result sets
available in a parameterized
execution

SQL_PARAM_ARRAY_SELECTS
(ODBC 3.0)

0 (does not support)

Responses to SQLGetInfo

3–12 ODBC Driver Conformance

Description InfoType Argument Returns

Supported operations in
SQLSetPos

SQL_POS_OPERATION
(Deprecated in ODBC 3.0.)

0 (does not support SQLSetPos)

Statements that support
positioned operations

SQL_POSITIONED_STATEMENTS
(Deprecated in ODBC 3.0.)

SQL_PS_POSITIONED_DELETE |
SQL_PS_POSITIONED_UPDATE |
SQL_PS_SELECT_FOR_UPDATE

Term for procedures SQL_PROCEDURE_TERM procedure

SQL procedures support SQL_PROCEDURES Y (supports SQL procedures)

Position of qualifier in a
qualified table name

SQL_QUALIFIER_LOCATION
(Renamed for ODBC 3.0.)

See SQL_CATALOG_LOCATION

Character used to separate
table, column qualifiers

SQL_QUALIFIER_NAME_SEPARATOR
(Renamed for ODBC 3.0.)

See SQL_CATALOG_NAME_SEPARATOR

Term for object that qualifies
table names

SQL_QUALIFIER_TERM
(Renamed for ODBC 3.0.)

See SQL_CATALOG_TERM

Statements that support
qualifiers

SQL_QUALIFIER_USAGE
(Renamed for ODBC 3.0.)

See SQL_CATALOG_USAGE

Case-sensitivity of quoted
user-supplied names

SQL_QUOTED_IDENTIFIER_CASE SQL_IC_SENSITIVE (case sensitive, stored
in mixed case)

Detect changes to any row in
mixed-cursor operations

SQL_ROW_UPDATES Y

Term for entity that has owner
privileges on objects

SQL_SCHEMA_TERM
(Renamed for ODBC 3.0. Was
SQL_OWNER_TERM)

owner

Statements that support use of
owner qualifiers

SQL_SCHEMA_USAGE
(Renamed for ODBC 3.0. Was
SQL_OWNER_USAGE)

SQL_OU_DML_STATEMENTS |
SQL_OU_PROCEDURE_INVOCATION |
SQL_OU_TABLE_DEFINITION |
SQL_OU_INDEX_DEFINITION |
SQL_OU_PRIVILEGE_DEFINITION

Concurrency control options
supported for scrollable
cursors

SQL_SCROLL_CONCURRENCY
(Deprecated in ODBC 3.0.)

0 (does not support)

Options supported for
scrollable cursors

SQL_SCROLL_OPTIONS SQL_SO_FORWARD_ONLY

Character to permit wildcard
characters in search strings

SQL_SEARCH_PATTERN_ESCAPE \ (backslash)

Name of the system where the
Dharma/SQL data source
resides

SQL_SERVER_NAME (string containing the name)

Special characters allowed in
user-supplied names

SQL_SPECIAL_CHARACTERS _ (underscore)

Level of SQL-92 support SQL_SQL_CONFORMANCE
(ODBC 3.0)

SQL_SC_SQL92_ENTRY (entry level
SQL-92 compliant)

Datetime scalar functions
supported

SQL_SQL92_DATETIME_FUNCTIONS
(ODBC 3.0)

SQL_SDF_CURRENT_DATE |
SQL_SDF_CURRENT_TIME

Responses to SQLGetInfo

ODBC Driver Conformance 3–13

Description InfoType Argument Returns

Behavior of DELETE
statement that refers to a
foreign key

SQL_SQL92_FOREIGN_KEY_DELETE_RU
LE
(ODBC 3.0)

SQL_SFKU_NO_ACTION

Behavior of UPDATE
statement that refers to a
foreign key

SQL_SQL92_FOREIGN_KEY_UPDATE_R
ULE
(ODBC 3.0)

SQL_SFKU_NO_ACTION

GRANT statement clauses
supported

SQL_SQL92_GRANT
(ODBC 3.0)

SQL_SG_DELETE_TABLE |
SQL_SG_INSERT_TABLE |
SQL_SG_INSERT_COLUMN |
SQL_SG_REFERENCES_TABLE |
SQL_SG_REFERENCES_COLUMN |
SQL_SG_SELECT_TABLE |
SQL_SG_UPDATE_TABLE |
SQL_SG_UPDATE_COLUMN

Numeric scalar functions
supported

SQL_SQL92_NUMERIC_VALUE_
FUNCTIONS
(ODBC 3.0)

SQL_SNVF_CHAR_LENGTH |
SQL_SNVF_CHARACTER_LENGTH

Predicates supported SQL_SQL92_PREDICATES
(ODBC 3.0)

SP_EXISTS | SQL_SP_ISNOTNULL |
SQL_SP_ISNULL | SQL_SP_UNIQUE |
SQL_SP_LIKE | SQL_SP_IN |
SQL_SP_BETWEEN

Relational join operators
supported

SQL_SQL92_RELATIONAL_JOIN_
OPERATORS
(ODBC 3.0)

SQL_SRJO_INNER_JOIN |
SQL_SRJO_LEFT_OUTER_JOIN |
SQL_SRJO_NATURAL_JOIN |
SQL_SRJO_RIGHT_OUTER_JOIN

REVOKE statement clauses
supported

SQL_SQL92_REVOKE
(ODBC 3.0)

SQL_SR_GRANT_OPTION_FOR |
SQL_SR_CASCADE |
SQL_SR_RESTRICT |
SQL_SR_DELETE_TABLE |
SQL_SR_INSERT_TABLE |
SQL_SR_INSERT_COLUMN |
SQL_SR_REFERENCES_TABLE |
SQL_SR_REFERENCES_COLUMN |
SQL_SR_SELECT_TABLE |
SQL_SR_UPDATE_TABLE |
SQL_SR_UPDATE_COLUMN

Row value constructor
expressions supported

SQL_SQL92_ROW_VALUE_CONSTRUCTOR
(ODBC 3.0)

0 (does not support)

String scalar functions
supported

SQL_SQL92_STRING_FUNCTIONS
(ODBC 3.0)

SQL_SSF_CONVERT |
SQL_SSF_LOWER | SQL_SSF_UPPER |
SQL_SSF_SUBSTRING |
SQL_SSF_TRANSLATE |
SQL_SSF_TRIM_LEADING |
SQL_SSF_TRIM_TRAILING

Value expressions supported SQL_SQL92_VALUE_EXPRESSIONS
(ODBC 3.0)

SQL_SVE_CASE | SQL_SVE_CAST |
SQL_SVE_COALESCE |
SQL_SVE_NULLIF

CLI standards to which the
driver conforms

SQL_STANDARD_CLI_CONFORMANCE
(ODBC 3.0)

SQL_SCC_XOPEN_CLI_VERSION1
(conforms to X/Open CLI version 1)

Responses to SQLGetInfo

3–14 ODBC Driver Conformance

Description InfoType Argument Returns

Supported attributes of a
static cursor: subset 1

SQL_STATIC_CURSOR_ATTRIBUTES1
(ODBC 3.0)

SQL_CA1_NEXT (supports
SQL_FETCH_NEXT argument to
SQLFetchScroll for static cursors)

Supported attributes of a
static cursor: subset 2

SQL_STATIC_CURSOR_ATTRIBUTES2
(ODBC 3.0)

0 (does not support any attributes in the
subset))

Whether static cursor changes
are detectable

SQL_STATIC_SENSITIVITY
(Deprecated in ODBC 3.0.)

0 (does not support static cursors)

String functions supported SQL_STRING_FUNCTIONS SQL_FN_STR_CONCAT |
SQL_FN_STR_INSERT |
SQL_FN_STR_LEFT |
SQL_FN_STR_LTRIM |
SQL_FN_STR_LENGTH |
SQL_FN_STR_LOCATE |
SQL_FN_STR_LCASE |
SQL_FN_STR_REPEAT |
SQL_FN_STR_REPLACE |
SQL_FN_STR_RTRIM |
SQL_FN_STR_SUBSTRING |
SQL_FN_STR_UCASE |
SQL_FN_STR_ASCII |
SQL_FN_STR_CHAR |
SQL_FN_STR_DIFFERENCE |
SQL_FN_STR_SOUNDEX |
SQL_FN_STR_SPACE |
SQL_FN_STR_CHAR_LENGTH |
SQL_FN_STR_CHARACTER_LENGTH

Predicates that support
subqueries

SQL_SUBQUERIES SQL_SQ_CORRELATED_SUBQUERIES |
SQL_SQ_COMPARISON |
SQL_SQ_EXISTS | SQL_SQ_IN |
SQL_SQ_QUANTIFIED

System functions supported SQL_SYSTEM_FUNCTIONS SQL_FN_SYS_DBNAME |
SQL_FN_SYS_IFNULL |
SQL_FN_SYS_USERNAME

Term for tables SQL_TABLE_TERM table

Timestamp intervals
supported for
TIMESTAMPADD function

SQL_TIMEDATE_ADD_INTERVALS SQL_TSI_FRAC_SECOND |
SQL_TSI_SECOND | SQL_TSI_MINUTE
| SQL_TSI_HOUR | SQL_TSI_DAY |
SQL_TSI_WEEK | SQL_TSI_MONTH |
SQL_TSI_QUARTER | SQL_TSI_YEAR

Timestamp intervals
supported for
TIMESTAMPDIFF function

SQL_TIMEDATE_DIFF_INTERVALS SQL_TSI_FRAC_SECOND |
SQL_TSI_SECOND | SQL_TSI_MINUTE
| SQL_TSI_HOUR | SQL_TSI_DAY |
SQL_TSI_WEEK | SQL_TSI_MONTH |
SQL_TSI_QUARTER | SQL_TSI_YEAR

Supported Environment, Connection, and Statement Attributes

ODBC Driver Conformance 3–15

Description InfoType Argument Returns

Date-time functions supported SQL_TIMEDATE_FUNCTIONS SQL_FN_TD_NOW |
SQL_FN_TD_CURDATE |
SQL_FN_TD_DAYNAME |
SQL_FN_TD_DAYOFMONTH |
SQL_FN_TD_DAYOFWEEK |
SQL_FN_TD_DAYOFYEAR |
SQL_FN_TD_MONTH |
SQL_FN_TD_MONTHNAME |
SQL_FN_TD_QUARTER |
SQL_FN_TD_WEEK |
SQL_FN_TD_YEAR |
SQL_FN_TD_CURTIME |
SQL_FN_TD_HOUR |
SQL_FN_TD_MINUTE |
SQL_FN_TD_SECOND |
SQL_FN_TD_TIMESTAMPADD |
SQL_FN_TD_TIMESTAMPDIFF

Support for DML, DDL within
transactions

SQL_TXN_CAPABLE SQL_TC_ALL (supports both DML and
DDL)

Options for setting transaction
isolation levels

SQL_TXN_ISOLATION_OPTION SQL_TXN_READ_UNCOMMITTED |
SQL_TXN_READ_COMMITTED |
SQL_TXN_REPEATABLE_READ |
SQL_TXN_SERIALIZABLE

UNION support SQL_UNION SQL_U_UNION | SQL_U_UNION_ALL

Name of user connected to the
data source

SQL_USER_NAME (string containing the name)

3.3 Supported Environment, Connection, and Statement
Attributes

Table 3–2 details the driver attributes that the Dharma/SQL ODBC Driver supports.
Applications can set and retrieve supported driver attributes through the following
routines:

• SQLGetEnvAttr and SQLSetEnvAttr for environment attributes

• SQLGetConnectAttr and SQLSetConnectAttr for connection attributes

• SQLGetStmtAttr and SQLSetStmtAttr for statement attributes

Table 3–2 Supported Environment, Connection, and Statement Attributes

Attribute Supported?

ODBC Environment Attributes

SQL_ATTR_CONNECTION_POOLING No

SQL_ATTR_CP_MATCH No

SQL_ATTR_ODBC_VER Yes

Supported Environment, Connection, and Statement Attributes

3–16 ODBC Driver Conformance

Attribute Supported?

SQL_ATTR_OUTPUT_NTS Yes

ODBC Connection Attributes

SQL_ATTR_ACCESS_MODE Yes (supports both read_only and
read_write connection modes)

SQL_ATTR_ASYNC_ENABLE Yes (supports only
SQL_ASYNC_ENABLE_OFF, for other
values returns warning “Option
value changed” and sets to default)

SQL_ATTR_AUTO_IPD Yes

SQL_ATTR_AUTOCOMMIT Yes

SQL_ATTR_CONNECTION_TIMEOUT Yes (supports only 0, for other values
returns warning “Option value
changed” and sets to default)

SQL_ATTR_CURRENT_CATALOG No

SQL_ATTR_LOGIN_TIMEOUT Yes (supports only 0, for other values
returns warning “Option value
changed” and sets to default)

SQL_ATTR_ODBC_CURSORS Yes

SQL_ATTR_PACKET_SIZE Yes (supports only default, for other
values returns warning “Option value
changed” and sets to default)

SQL_ATTR_QUIET_MODE Yes (supports only default, for other
values returns warning “Option value
changed” and sets to default)

SQL_ATTR_TRACE No

SQL_ATTR_TRACEFILE No

SQL_ATTR_TRANSLATE_DLL No

SQL_ATTR_TRANSLATE_LIB No

SQL_ATTR_TRANSLATE_OPTION No

SQL_ATTR_TXN_ISOLATION Yes

ODBC Statement Attributes

SQL_ATTR_APP_PARAM_DESC Yes

SQL_ATTR_APP_ROW_DESC Yes

SQL_ATTR_ASYNC_ENABLE Yes (supports only
SQL_ASYNC_ENABLE_OFF, for other
values returns warning “Option
value changed” and sets to default)

Supported Environment, Connection, and Statement Attributes

ODBC Driver Conformance 3–17

Attribute Supported?

SQL_ATTR_CONCURRENCY Yes (supports only
SQL_CONCUR_READ_ONLY, for
other values returns warning “Option
value changed” and sets to default)

SQL_ATTR_CURSOR_SCROLLABLE No

SQL_ATTR_CURSOR_TYPE Yes (supports only
SQL_FORWARD_ONLY, for other
values returns warning “Option value
changed” and sets to default)

SQL_ATTR_CURSOR_SENSITIVITY Yes (supports only
SQL_INSENSITIVE, for other values
returns warning “Option value
changed” and sets to default)

SQL_ATTR_ENABLE_AUTO_IPD No

SQL_ATTR_FETCH_BOOKMARK_PTR No

SQL_ATTR_IMP_PARAM_DESC Yes

SQL_ATTR_IMP_ROW_DESC Yes

SQL_ATTR_KEYSET_SIZE No

SQL_ATTR_MAX_LENGTH No

SQL_ATTR_MAX_ROWS Yes

SQL_ATTR_METADATA_ID Yes

SQL_ATTR_NOSCAN No

SQL_ATTR_PARAM_BIND_OFFSET_PTR Yes

SQL_ATTR_PARAM_BIND_TYPE Yes

SQL_ATTR_PARAM_OPERATION_PTR Yes

SQL_ATTR_PARAM_STATUS_PTR Yes

SQL_ATTR_PARAMS_PROCESSED_PTR Yes

SQL_ATTR_PARAMSET_SIZE Yes

SQL_ATTR_QUERY_TIMEOUT Yes (supports only 0, for other values
returns warning “Option value
changed” and sets to default)

SQL_ATTR_RETRIEVE_DATA Yes

SQL_ATTR_ROW_ARRAY_SIZE Yes

SQL_ATTR_ROW_BIND_OFFSET_PTR Yes

SQL_ATTR_ROW_BIND_TYPE Yes

Supported ODBC API Functions

3–18 ODBC Driver Conformance

Attribute Supported?

SQL_ATTR_ROW_NUMBER No

SQL_ATTR_ROW_OPERATION_PTR Yes

SQL_ATTR_ROW_STATUS_PTR Yes

SQL_ATTR_ROWS_FETCHED_PTR Yes

SQL_ATTR_SIMULATE_CURSOR No

SQL_ATTR_USE_BOOKMARKS No

3.4 Supported ODBC API Functions

The ODBC Driver supports all Core and Level 1 API functions, and most Level 2
functions. Here is a complete list of the functions the driver supports. Applications can
request this same information through the SQLGetFunctions function with a FunctionId
of SQL_API_ODBC3_ALL_FUNCTIONS.

SQLAllocConnect
(Deprecated in ODBC 3.0)

SQLAllocEnv
(Deprecated in ODBC 3.0)

SQLAllocHandle

SQLAllocStmt
(Deprecated in ODBC 3.0)

SQLBindCol

SQLBindParam
(Deprecated in ODBC 3.0)

SQLBindParameter

SQLBrowseConnect

SQLCancel

SQLCloseCursor

SQLColAttribute

SQLColAttributes
(Deprecated in ODBC 3.0)

SQLColumnPrivileges

SQLColumns

SQLConnect

SQLCopyDesc

SQLDataSources

SQLDescribeCol

SQLDescribeParam

SQLDisconnect

SQLDriverConnect

SQLDrivers

SQLEndTran

SQLError
(Deprecated in ODBC 3.0)

SQLExecDirect

SQLExecute

SQLExtendedFetch
(Deprecated in ODBC 3.0)

SQLFetch

SQLFetchScroll

SQLForeignKeys

SQLFreeConnect
(Deprecated in ODBC 3.0)

SQLFreeEnv
(Deprecated in ODBC 3.0)

SQLFreeHandle

Supported Data Types

ODBC Driver Conformance 3–19

SQLFreeStmt
(Deprecated in ODBC 3.0)

SQLGetConnectAttr

SQLGetConnectOption
(Deprecated in ODBC 3.0)

SQLGetCursorName

SQLGetData

SQLGetDescField

SQLGetDescRec

SQLGetDiagField

SQLGetDiagRec

SQLGetEnvAttr

SQLGetFunctions

SQLGetInfo

SQLGetStmtAttr

SQLGetStmtOption
(Deprecated in ODBC 3.0)

SQLGetTypeInfo

SQLMoreResults

SQLNativeSql

SQLNumParams

SQLNumResultCols

SQLParamData

SQLParamOptions
(Deprecated in ODBC 3.0)

SQLPrepare

SQLPrimaryKeys

SQLProcedureColumns

SQLProcedures

SQLPutData

SQLRowCount

SQLSetConnectAttr

SQLSetConnectOption
(Deprecated in ODBC 3.0)

SQLSetCursorName

SQLSetDescField

SQLSetDescRec

SQLSetEnvAttr

SQLSetParam
(Deprecated in ODBC 3.0)

SQLSetScrollOptions

SQLSetStmtAttr

SQLSetStmtOption
(Deprecated in ODBC 3.0)

SQLSpecialColumns

SQLStatistics

SQLTablePrivileges

SQLTables

SQLTransact
(Deprecated in ODBC 3.0)

3.5 Supported Data Types

The Dharma DataLink Driver supports data types that it maps to corresponding ODBC
SQL data types. Table 3–3 lists the Dharma data types and the corresponding ODBC
data types.

Supported Data Types

3–20 ODBC Driver Conformance

Table 3–3 Dharma and Corresponding ODBC Data Types

Dharma Data Type ODBC Data Type

BIGINT SQL_BIGINT

BINARY SQL_BINARY

BIT SQL_BIT

CHARACTER SQL_CHAR

DATE SQL_DATE

DECIMAL SQL_DECIMAL

DOUBLE PRECISION SQL_DOUBLE

FLOAT SQL_DOUBLE

FLOAT SQL_FLOAT

INTEGER SQL_INTEGER

LVARBINARY SQL_LONGVARBINARY

LVARCHAR SQL_LONGVARCHAR

NUMERIC SQL_NUMERIC

REAL SQL_REAL

SMALLINT SQL_SMALLINT

TIME SQL_TIME

TIMESTAMP SQL_TIMESTAMP

TINYINT SQL_TINYINT

VARBINARY SQL_VARBINARY

VARCHAR SQL_VARCHAR

SQL Language Elements 4–1

4
SQL Language Elements

This chapter describes language elements that are common to many SQL statements.
Syntax diagrams in other chapters often refer to these language elements without
detailed explanation. The major syntax elements described in the following sections are:

Identifiers (page 4-3) are user-supplied names for elements such as tables, views,
cursors, and columns. SQL statements use those names to refer to the elements.

Data types (page 4-4) control how SQL stores column values. CREATE TABLE
statements specify data types for columns.

Query expressions (page 4-13) retrieve values from tables. Query expressions form the
basis of other SQL statements and syntax elements

Search conditions (page 4-24) specify a condition that is true or false about a given row
or group of rows. Query expressions and UPDATE statements specify search conditions
to restrict the number of rows in the result table.

Expressions (page 4-30) are a symbol or string of symbols used to represent or calculate
a single value in an SQL statement. When SQL encounters an expression , it retrieves or
calculates the value represented by the expression and uses that value when it executes
the statement.

Literals (page 4-35) are a type of SQL expression that specify a constant value. Some
SQL constructs allow literals but prohibit other forms of expressions.

Date-time format strings (page 4-40) control the output of date and time values.
Dharma/SQL interprets format strings and replaces them with formatted values.

Functions (page 4-43) are a type of SQL expression that return a value based on the
argument they are supplied. Aggregate functions calculate a single value for a collection
of rows in a result table. Scalar functions calculate a value based on another single
value.

Overview

4–2 SQL Language Elements

4.1 SQL Features: Lite and Professional Editions

The Lite and Professional editions of the Dharma DataLink SDK support different levels
of SQL functionality. Table 4–1 details which SQL features are supported by the Lite
and Professional editions.

Table 4–1 SQL Features Supported by Lite and Professional Editions

SQL Support

SELECT/INSERT/UPDATE/DELETE ü ü

INSERT…SELECT ü ü

CREATE/DROP TABLE ü ü

CREATE/DROP INDEX ü ü

CREATE/DROP SYNONYM ü ü

GROUP BY clause ü ü

AVG, COUNT, MAX, MIN, SUM ü ü

20 SQL data types (including LONG, DATE) ü ü

Interactive SQL utility ü ü

Transaction support ü ü

User authentication ü ü

Set operators (UNION/INTERSECT/MINUS)

The UNION, INTERSECT, and MINUS set operators manipulate how SQL
returns result sets from multiple query expressions (Section 4.4).

ü

Library of over 100 scalar functions (Section 4.9.2) ü

HAVING clause: The HAVING clause in query expressions (Section 4.4)
specifies a search condition for the row groupings specified in the GROUP
BY clause.

ü

Table/column privileges: GRANT (Section 5.11) and REVOKE (Section
5.14) statements.

ü

Outer Joins (Section 4.4.2) ü

CASE expressions (Sections 4.6.4 and 4.9.2.8) ü

Derived tables: Derived tables are specified through query expressions in
the FROM clause of another query expression (Section 4.4).

ü

Subqueries: Subqueries are query expressions used within a search
condition or as an expression. Subqueries can occur in basic predicates
(Section 4.5.3), quantified predicates (Section 4.5.4), IN predicates (Section
4.5.10), and expressions (Section 4.6)

ü

View support: CREATE (Section 5.5) and DROP VIEW (Section 5.10)
statements.

ü

SQL Identifiers

SQL Language Elements 4–3

SQL Support

SET SCHEMA statement: (Section 5.16) changes default qualifier for
database objects

ü

The following SQL features are not supported in either the Lite or Professional editions:

• Multiple character sets and collation sequences (page 4-6)

• ALTER TABLE statement (referred to in the discussion of data types (Section 4.3)
and in the discussion of DROP TABLE (Section 5.9))

• CREATE TABLE statement (Section 5.4): TABLESPACE, PCTFREE, or
STORAGE_MANAGER clauses

• CREATE INDEX statement (Section 5.2): PCTFREE clause

4.2 SQL Identifiers

SQL syntax requires users to supply names for elements such as tables, views, cursors,
and columns when they define them. SQL statements must use those names to refer to
the table, view, or other element. In syntax diagrams, SQL identifiers are shown in
lowercase type.

The maximum length for SQL identifiers is 32 characters.

There are two types of SQL identifiers:

• Conventional identifiers

• Delimited identifiers enclosed in double quotation marks

4.2.1 Conventional Identifiers
Unless they are delimited identifiers (see "Delimited Identifiers"), SQL identifiers must:

• Begin with an uppercase or lowercase letter

• Contain only letters, digits, or the underscore character (_)

• Not be reserved words

Except for delimited identifiers, SQL does not distinguish between uppercase and
lowercase letters in SQL identifiers. It converts all names to lower case, but statements
can refer to the names in mixed case. The following examples show some of the
characteristics of conventional identifiers:

Overview

4–4 SQL Language Elements

-- Names are case-insensitive:
CREATE TABLE TeSt (CoLuMn1 CHAR);
INSERT INTO TEST (COLUMN1) VALUES('1');
1 record inserted.
SELECT * FROM TEST;
COL

1
1 record selected
 TABLE TEST;
COLNAME NULL ? TYPE LENGTH
------- ------ ---- ------
column1
-- Cannot use reserved words:
CREATE TABLE TABLE (COL1 CHAR);
CREATE TABLE TABLE (COL1 CHAR);
 *
error(-20003): Syntax error

4.2.2 Delimited Identifiers

Delimited identifiers are SQL identifiers enclosed in double quotation marks (").
Enclosing a name in double quotation marks preserves the case of the name and allows
it to be a reserved word and special characters. (Special characters are any characters
other than letters, digits, or the underscore character.) Subsequent references to a
delimited identifier must also use enclosing double quotation marks. To include a
double-quotation-mark character in a delimited identifier, precede it with another
double-quotation mark.

The following SQL example shows some ways to create and refer to delimited identifiers:

CREATE TABLE "delimited ids"
 ("""" CHAR(10),
 "_uscore" CHAR(10),
 """quote" CHAR(10),
 " space" CHAR(10));
INSERT INTO "delimited ids" ("""") VALUES('text string');
1 record inserted.
SELECT * FROM "delimited ids";
" _USCORE "QUOTE SPACE
- ------- ------ ------
text strin
1 record selected
CREATE TABLE "TABLE" ("CHAR" CHAR);

4.3 Data Types

The SQL statements CREATE TABLE and ALTER TABLE specify data types for each
column in the tables they define. This section describes the data types SQL supports for
table columns.

There are several categories of SQL data types:

• Character

• Exact numeric

Data Types

SQL Language Elements 4–5

• Approximate numeric

• Date-time

• Bit String

All the data types can store null values. A null value indicates that the value is not
known and is distinct from all non-null values.

Syntax

data_type ::
char_data_type

| exact_numeric_data_type
| approx_numeric_data_type
| date_time_data_type
| bit_string_data_type

4.3.1 Character Data Types
See "Character String Literals" on page 4-36 for details on specifying values to be stored
in character columns.

Syntax

char_data_type ::
{ CHARACTER | CHAR } [(length)] [CHARACTER SET charset-name]

| { CHARACTER VARYING | CHAR VARYING | VARCHAR } [(length)]
[CHARACTER SET charset-name]

| LVARCHAR | LONG VARCHAR
| { NATIONAL CHARACTER | NATIONAL CHAR | NCHAR } [(length)]
| { NATIONAL CHARACTER VARYING | NATIONAL VARCHAR } [(length)]

Arguments

{ CHARACTER | CHAR } [(length)] [CHARACTER SET charset-name]
Type CHARACTER (abbreviated as CHAR) corresponds to a null terminated character
string with the maximum length specified. The default length is 1. The maximum
length is 2000.

The optional CHARACTER SET clause specifies an alternative character set supported
by the underlying storage system. "Specifying the Character Set for Character Data
Types" on page 4-6 describes general considerations for using this clause. See the
documentation for the underlying storage system for details on valid values for charset-
name, if any.

{ NATIONAL CHARACTER | NATIONAL CHAR | NCHAR } [(length)]
Type NATIONAL CHARACTER is equivalent to type CHARACTER with a
CHARACTER SET clause specifying the character set designated as NATIONAL
CHARACTER by the underlying storage system. See "Specifying the Character Set for
Character Data Types" on page 4-6.

{ CHARACTER VARYING | CHAR VARYING | VARCHAR } [(length)]
[CHARACTER SET charset-name]

Type CHARACTER VARYING corresponds to a variable-length character string with
the maximum length specified.

Overview

4–6 SQL Language Elements

The optional CHARACTER SET clause specifies an alternative character set supported
by the underlying storage system. "Specifying the Character Set for Character Data
Types" on page 4-6 describes general considerations for using this clause. See the
documentation for the underlying storage system for details on valid values for charset-
name, if any.

The default length for columns defined as CHARACTER VARYING is 1. The maximum
length depends on whether the data type specification includes the CHARACTER SET
clause:

• If it does not specify CHARACTER SET, the maximum length is 2000.

• If it does specify CHARACTER SET, the maximum length is 32752.

{ NATIONAL CHARACTER VARYING | NATIONAL VARCHAR } [(length)]
Type NATIONAL CHARACTER VARYING is equivalent to type CHARACTER
VARYING with a CHARACTER SET clause specifying the character set designated as
NATIONAL CHARACTER by the underlying storage system. See "Specifying the
Character Set for Character Data Types" on page 4-6.

LVARCHAR | LONG VARCHAR
Type LONG VARCHAR corresponds to an arbitrarily-long character string with a
maximum length limited by the specific storage system.

The arbitrary size and unstructured nature of LONG data types restrict where they can
be used.

• LONG columns are allowed in select lists of query expressions and in INSERT
statements.

• INSERT statements can store data from columns of any type into a LONG
VARCHAR column, but LONG VARCHAR data cannot be stored in any other type.

• CONTAINS predicates are the only predicates that allow LONG columns (and then
only if the underlying storage system explicitly supports CONTAINS predicates).

• Conditional expressions, arithmetic expressions, and functions cannot specify
LONG columns.

• UPDATE statements cannot specify LONG columns.

Specifying the Character Set for Character Data Types

SQL allows column definitions of type CHARACTER and CHARACTER VARYING to
specify an alternate character set. If you omit the CHARACTER SET clause in a column
definition, the default character set is the standard 7-bit ASCII character set, shown in
Table 4–2.

The character set associated with a table column defines which set of characters can be
stored in that column, how those characters are represented in the underlying storage
system, and how character strings using the character set compare with each other:

• The set of characters allowed in a character set is called the repertoire of the
character set. The default ASCII character set has a repertoire of 128 characters,
shown in Table 4–2. Other character sets, such as Unicode, specify much larger
repertoires and include characters for many languages other than English.

Data Types

SQL Language Elements 4–7

• The storage representation for a character set is called the form of use of the
character set. The form of use for the default ASCII character set is a single byte (or
octet) containing a number designating a particular ASCII character, also shown in
Table 4–2. Other character sets, such as Unicode, use two or more bytes (or a
varying number of bytes, depending on the character) for each character.

• The rules used to control how character strings compare with each other is called
the collation of a character set. Each character set specifies a collating sequence that
defines relative values of each character for comparing, merging and sorting
character strings. Character sets may also define additional collations that override
the default for a character set. SQL statements specify such collations with the
COLLATE clause in character column definitions, basic predicates, the GROUP BY
clause of query expressions, and the ORDER BY clause of SELECT statements.

Table 4–2 shows the characters in the default ASCII character set and the decimal values
that designate each character. (This is the default representation on UNIX; other
operating systems may have slight differences in their definitions of the default ASCII
character set.) The values also define the collating sequence for the character set. For
instance, this collating sequence specifies that a lowercase letter is always a larger value
than an uppercase letter.

Table 4–2 Default ASCII Character Set

Val Char Val Char Val Char Val Char Val Char

0 NUL 1 SOH 2 STX 3 ETX 4 EOT

5 ENQ 6 ACK 7 BEL 8 BS 9 HT

10 NL 11 VT 12 NP 13 CR 14 SO

15 SI 16 DLE 17 DC1 18 DC2 19 DC3

20 DC4 21 NAK 22 SYN 23 ETB 24 CAN

25 EM 26 SUB 27 ESC 28 FS 29 GS

30 RS 31 US 32 SP 33 ! 34 "

35 # 36 $ 37 % 38 & 39 '

40 (41) 42 * 43 + 44 ,

45 - 46 . 47 / 48-57 0-9 58 :

59 ; 60 < 61 = 62 > 63 ?

64 @ 91 [92 \ 93] 94 ^

95 _ 96 ` 65-90 A-Z 97-122 a-z 123 {

124 | 125 } 126 ~ 127 DEL

Dharma/SQL supports the ASCII_SET character-set name and a collation sequence
named CASE_INSENSITIVE. The ASCII_SET character set is the same as the default
and is provided to test and illustrate the CHARACTER SET syntax. The
CASE_INSENSITIVE collation sequence overrides the default ASCII collation and
specifies the same comparison values for a lowercase letter as its uppercase counterpart.

The following example uses the ISQL TABLE command to show two tables. bigwigs is
defined with the CASE_INSENSITIVE collating sequence for its column, and bigwigs2 is
not. Both tables contain the same data. SELECT statements show the difference in
collation:

Overview

4–8 SQL Language Elements

ISQL> TABLE bigwigs
COLNAME NULL ? TYPE LENGTH CHARSET NAME COLLATION
------- ------ ---- ------ ------------ ---------
name CHAR 10
CASE_INSENSITIVE
ISQL> TABLE bigwigs2
COLNAME NULL ? TYPE LENGTH CHARSET NAME COLLATION
------- ------ ---- ------ ------------ ---------
name CHAR 10

ISQL> select * from bigwigs order by name;
NAME

bill
LARRY
mARk
scott
4 records selected
ISQL> select * from bigwigs2 order by name;
NAME

LARRY
bill
mARk
scott

Support for character sets other than ASCII_SET and collations other than
CASE_INSENSITIVE depends on the underlying storage system. When statements refer
to a character set or collation name that is not supported by the underlying storage
system, SQL generates an error:

ISQL> create table badset (c1 char(10) character set bad_set);
create table badset (c1 char(10) character set bad_set);
 *
error(-20239): Invalid character set name specified
ISQL> create table badseq (c1 char(10) collate bad_seq);
create table badseq (c1 char(10) collate bad_seq);
 *
error(-20240): Invalid collation name specified

The NATIONAL CHARACTER reserved words in SQL are shorthand notation for
specifying a particular character set supported by the underlying storage system. If the
underlying storage system designates a supported character set as the national
character set, column definitions can use the NATIONAL CHARACTER (or NATIONAL
CHARACTER VARYING) data type instead of explicitly specifying the character set
name in the CHARACTER SET clause of the CHARACTER (or CHARACTER VARYING
) data type. If the underlying storage system does not associate another character set
with the NATIONAL CHARACTER clause, the default national character set is the
ASCII_SET character set.

4.3.2 Exact Numeric Data Types
See "Numeric Literals" for details on specifying values to be stored in numeric columns.

Data Types

SQL Language Elements 4–9

Syntax

exact_numeric_data_type ::
TINYINT

| SMALLINT
| INTEGER
| BIGINT
| NUMERIC | NUMBER [(precision [, scale])]
| DECIMAL [(precision, scale)]
| MONEY [(precision)]

Arguments

TINYINT
Type TINYINT corresponds to an integer value stored in one byte. The range of
TINYINT is -128 to 127.

SMALLINT
Type SMALLINT corresponds to an integer value of length 2 bytes.

The range of SMALLINT is -32768 to +32767.

INTEGER
Type INTEGER corresponds to an integer of length 4 bytes.

The range of values for INTEGER columns is -2 ** 31 to 2 ** 31 -1.

BIGINT
Type BIGINT corresponds to an integer of length 8 bytes. The range of values for
BIGINT columns is -2 ** 63 to 2 ** 63 -1.

NUMERIC | NUMBER [(precision [, scale])]
Type NUMERIC corresponds to a number with the given precision (maximum number
of digits) and scale (the number of digits to the right of the decimal point). By default,
NUMERIC columns have a precision of 32 and scale of 0. If NUMERIC columns omit
the scale, the default scale is 0.

The range of values for a NUMERIC type column is -n to +n where n is the largest
number that can be represented with the specified precision and scale. If a value
exceeds the precision of a NUMERIC column, SQL generates an overflow error. If a
value exceeds the scale of a NUMERIC column, SQL rounds the value.

NUMERIC type columns cannot specify a negative scale or specify a scale larger than
the precision.

The following example shows what values will fit in a column created with a precision
of 3 and scale of 2:

Overview

4–10 SQL Language Elements

insert into t4 values(33.33);
error(-20052): Overflow error
insert into t4 values(33.9);
error(-20052): Overflow error
insert into t4 values(3.3);
1 record inserted.
insert into t4 values(33);
error(-20052): Overflow error
insert into t4 values(3.33);
1 record inserted.
insert into t4 values(3.33333);
1 record inserted.
insert into t4 values(3.3555);
1 record inserted.
select * from t4;
 C1
 --
 3.30
 3.33
 3.33
 3.36
4 records selected

DECIMAL [(precision, scale)]
Type DECIMAL is equivalent to type NUMERIC.

MONEY [(precision)]
Type MONEY is equivalent to type NUMERIC with a fixed scale of 2.

4.3.3 Approximate Numeric Data Types
See "Numeric Literals" for details on specifying values to be stored in numeric columns.

Syntax

approx_numeric_data_type ::
REAL

| DOUBLE PRECISION
| FLOAT [(precision)]

Arguments

REAL
Type REAL corresponds to a single precision floating point number equivalent to the C
language float type.

DOUBLE PRECISION
Type DOUBLE PRECISION corresponds to a double precision floating point number
equivalent to the C language double type.

FLOAT [(precision)]
Type FLOAT corresponds to a double precision floating point number of the given
precision. By default, FLOAT columns have a precision of 8.

Data Types

SQL Language Elements 4–11

4.3.4 Date-Time Data Types
See "Date-Time Literals" for details on specifying values to be stored in date-time
columns. See "Date-Time Format Strings" for details on using format strings to specify
the output format of date-time columns.

Syntax

date_time_data_type ::
DATE

| TIME
| TIMESTAMP

Arguments

DATE
Type DATE stores a date value as three parts: year, month, and day. The range for the
parts is:

• Year: 1 to 9999

• Month: 1 to 12

• Day: Lower limit is 1; the upper limit depends on the month and the year

TIME
Type TIME stores a time value as four parts: hours, minutes, seconds, and milliseconds.
The range for the parts is:

• Hours: 0 to 23

• Minutes: 0 to 59

• Seconds: 0 to 59

• Milliseconds: 0 to 999

TIMESTAMP
Type TIMESTAMP combines the parts of DATE and TIME.

4.3.5 Bit String Data Types
Syntax

bit_string_data_type ::
BIT

| BINARY [(length)]
| VARBINARY [(length)]
| LVARBINARY | LONG VARBINARY

Arguments

BIT
Type BIT corresponds to a single bit value of 0 or 1.

SQL statements can assign and compare values in BIT columns to and from columns of
types CHAR, VARCHAR, BINARY, VARBINARY, TINYINT, SMALLINT, and

Overview

4–12 SQL Language Elements

INTEGER. However, in assignments from BINARY, VARBINARY, and LONG
VARBINARY, the value of the first four bits must be 0001 or 0000.

No arithmetic operations are allowed on BIT columns.

BINARY [(length)]
Type BINARY corresponds to a bit field of the specified length of bytes. The default
length is 1 byte. The maximum length is 2000 bytes.

In interactive SQL, INSERT statements must use a special format to store values in
BINARY columns. They can specify the binary values as a bit string, hexadecimal
string, or character string. INSERT statements must enclose binary values in single-
quote marks, preceded by b for a bit string and x for a hexadecimal string:

Prefix Suffix Example (for same 2 byte data)

bit string b' ' b'1010110100010000'

hex string x' ' x'ad10'

char string ' ' 'ad10'

SQL interprets a character string as the character representation of a hexadecimal string.

If the data inserted into a BINARY column is less than the length specified, SQL pads it
with zeroes.

BINARY data can be assigned and compared to and from columns of type BIT, CHAR,
and VARBINARY types. No arithmetic operations are allowed.

VARBINARY [(length)]
Type VARBINARY corresponds to a variable-length bit field with the maximum length
specified. The default length is 1 and the maximum length is 32752. Otherwise,
VARBINARY columns have the same characteristics as BINARY.

LVARBINARY | LONG VARBINARY
Type LONG VARBINARY corresponds to an arbitrarily-long bit field with the maximum
length defined by the underlying storage system.

The arbitrary size and unstructured nature of LONG data types restrict where they can
be used.

• LONG columns are allowed in select lists of query expressions and in INSERT
statements.

• INSERT statements can store data from columns of any type into a LONG
VARCHAR column, but LONG VARCHAR data cannot be stored in any other type.

• CONTAINS predicates are the only predicates that allow LONG columns (and then
only if the underlying storage system explicitly supports CONTAINS predicates).

• Conditional expressions, arithmetic expressions, and functions cannot specify
LONG columns.

• UPDATE statements cannot specify LONG columns.

Query Expressions

SQL Language Elements 4–13

4.4 Query Expressions

Description

A query expression selects the specified column values from one or more rows contained
in one or more tables specified in the FROM clause. The selection of rows is restricted by
a search condition in the WHERE clause. The temporary table derived through the
clauses of a select statement is called a result table.

Query expressions form the basis of other SQL statements and syntax elements:

• SELECT statements are query expressions with optional ORDER BY and FOR
UPDATE clauses.

• CREATE VIEW statements specify their result table as a query expression.

• INSERT statements can specify a query expression to add the rows of the result table
to a table.

• UPDATE statements can specify a query expression that returns a single row to
modify columns of a row.

• Some search conditions can specify query expressions. Basic predicates can specify
query expressions, but the result table can contain only a single value. Quantified
and IN predicates can specify query expressions, but the result table can contain
only a single column.

• The FROM clause of a query expression can itself specify a query expression, called
a derived table .

Syntax

query_expression ::
 query_specification
| query_expression set_operator query_expression
| (query_expression)

set_operator ::
 { UNION [ALL] | INTERSECT | MINUS }

query_specification ::
SELECT [ALL | DISTINCT]
 {
 *
 | { table_name | alias } . * [, { table_name | alias } . *] …
 | expr [[AS] ['] column_title [']] [, expr [[AS] ['] column_title [']]] ...
 }
FROM table_ref [{ dharma ORDERED }] [, table_ref [{ dharma ORDERED }] …
[WHERE search_condition]
[GROUP BY [table.]column_name [COLLATE collation-name]
 [, [table.]column_name [COLLATE collation-name]] ...
[HAVING search_condition]

Overview

4–14 SQL Language Elements

table_ref ::
 table_name [AS] [alias [(column_alias [, …])]]
 | (query_expression) [AS] alias [(column_alias [, …])]
 | [(] joined_table [)]

joined_table ::
 table_ref CROSS JOIN table_ref
 | table_ref [INNER | LEFT [OUTER]] JOIN table_ref ON search_condition

Arguments

SELECT [ALL | DISTINCT]
DISTINCT specifies that the result table omits duplicate rows. ALL is the default, and
specifies that the result table includes all rows.

SELECT * | { table_name | alias } . *
Specifies that the result table includes all columns from all tables named in the FROM
clause. For instance, the following examples both specify all the columns in the
customers table:

SELECT * FROM customers;
SELECT customers.* FROM customers;

The tablename.* syntax is useful when the select list refers to columns in multiple tables,
and you want to specify all the columns in one of those tables:

SELECT CUSTOMERS.CUSTOMER_ID, CUSTOMERS.CUSTOMER_NAME, ORDERS.*
 FROM CUSTOMERS, ORDERS …

SELECT expr [[AS] ['] column_title [']]
Specifies a list of expressions, called a select list, whose results will form columns of the
result table. Typically, the expression is a column name from a table named in the
FROM clause. The expression can also be any supported mathematical expression,
scalar function, or aggregate function that returns a value.

The optional ' column_title ' argument specifies a new heading for the associated column
in the result table. Enclose the new title in single or double quotation marks if it contains
spaces or other special characters:

SELECT order_value, order_value * .2 AS 'order "markup"' FROM orders;
 ORDER_VALUE ORDER "MARKUP"
 ----------- --------------
 5000000.00 1000000.00
 110000.00 22000.00
 3300000.00 660000.00

You can qualify column names with the name of the table they belong to:

SELECT CUSTOMER.CUSTOMER_ID FROM CUSTOMERS

You must qualify a column name if it occurs in more than one table specified in the
FROM clause:

SELECT CUSTOMERS.CUSTOMER_ID
 FROM CUSTOMERS, ORDERS

Qualified column names are always allowed even when they are not required.

Query Expressions

SQL Language Elements 4–15

FROM table_ref …
The FROM clause specifies one or more table references. Each table reference resolves to
one table (either a table stored in the database or a virtual table resulting from processing
the table reference) whose rows the query expression uses to create the result table.
There are three forms of table references:

• A direct reference to a table, view or synonym

• A derived table specified by a query expression in the FROM clause

• A joined table that combines rows and columns from multiple tables

The usage notes specific to each form of table reference follow.

If there are multiple table references, SQL joins the tables to form an intermediate result
table that is used as the basis for evaluating all other clauses in the query expression.
That intermediate result table is the Cartesian product of rows in the tables in the FROM
clause, formed by concatenating every row of every table with all other rows in all tables.

FROM table_name [AS] [alias [(column_alias [, …])]]
Explicitly names a table. The name listed in the FROM clause can be a table name, a
view name, or a synonym.

The alias is a name you use to qualify column names in other parts of the query
expression. Aliases are also called correlation names.

If you specify an alias, you must use it, and not the table name, to qualify column names
that refer to the table. Query expressions that join a table with itself must use aliases to
distinguish between references to column names.

For example, the following query expression joins the table customer with itself. It uses
the aliases x and y and returns information on customers in the same city as customer
SMITH:

SELECT y.cust_no, y.name
 FROM customer x, customer y
 WHERE x.name = 'SMITH'
 AND y.city = x.city ;

Similar to table aliases, the column_alias provides an alternative name to use in column
references elsewhere in the query expression. If you specify column aliases, you must
specify them for all the columns in table_name. Also, if you specify column aliases in the
FROM clause, you must use them—not the column names—in references to the columns.

FROM (query_expression) [AS] alias [(column_alias [, …])]
Specifies a derived table through a query expression. With derived tables, you must
specify an alias to identify the derived table.

Derived tables can also specify column aliases. Column aliases provides an alternative
name to use in column references elsewhere in the query expression. If you specify
column aliases, you must specify them for all the columns in the result table of the query
expression. Also, if you specify column aliases in the FROM clause, you must use them,
and not the column names, in references to the columns.

Overview

4–16 SQL Language Elements

FROM [(] joined_table [)]
Combines data from two table references by specifying a join condition. The syntax
currently allowed in the FROM clause supports only a subset of possible join conditions:

• CROSS JOIN specifies a Cartesian product of rows in the two tables

• INNER JOIN specifies an inner join using the supplied search condition

• LEFT OUTER JOIN specifies a left outer join using the supplied search condition

You can also specify these and other join conditions in the WHERE clause of a query
expression. See "Inner Joins" and "Outer Joins" for more detail on both ways of
specifying joins.

{ dharma ORDERED }
Directs the SQL engine optimizer to join the tables in the order specified. Use this clause
when you want to override the SQL engine's join-order optimization. This is useful for
special cases when you know that a particular join order will result in the best
performance from the underlying storage system. Since this clause bypasses join-order
optimization, carefully test queries that use it to make sure the specified join order is
faster than relying on the optimizer.

Note that the braces ({ and }) are part of the required syntax and not syntax
conventions.

SELECT sc.tbl 'Table', sc.col 'Column',
 sc.coltype 'Data Type', sc.width 'Size'
FROM systpe.syscolumns sc, systpe.systables st
 { dharma ORDERED }
WHERE sc.tbl = st.tbl AND st.tbltype = 'S'
ORDER BY sc.tbl, sc.col;

WHERE search_condition
The WHERE clause specifies a search_condition that applies conditions to restrict the
number of rows in the result table. If the query expression does not specify a WHERE
clause, the result table includes all the rows of the specified table reference in the FROM
clause.

The search_condition is applied to each row of the result table set of the FROM clause.
Only rows that satisfy the conditions become part of the result table. If the result of the
search_condition is NULL for a row, the row is not selected.

Search conditions can specify different conditions for joining two or more tables. See
"Inner Joins" on page 4-20 and "Outer Joins" on page 4-23 for more details.

See "Search Conditions" on page 4-24 for details on the different kinds of search
conditions.

SELECT *
 FROM customer
 WHERE city = 'BURLINGTON' AND state = 'MA' ;

 SELECT *
 FROM customer
 WHERE city IN (
 SELECT city
 FROM customer
 WHERE name = 'SMITH') ;

Query Expressions

SQL Language Elements 4–17

GROUP BY column_name ...
Specifies grouping of rows in the result table:

• For the first column specified in the GROUP BY clause, SQL arranges rows of the
result table into groups whose rows all have the same values for the specified
column.

• If a second GROUP BY column is specified, SQL then groups rows in each main
group by values of the second column.

• SQL groups rows for values in additional GROUP BY columns in a similar fashion.

All columns named in the GROUP BY clause must also be in the select list of the query
expression. Conversely, columns in the select list must also be in the GROUP BY clause
or be part of an aggregate function.

If column_name refers to a character column, the column reference can include an
optional COLLATE clause. The COLLATE clause specifies a collation sequence
supported by the underlying storage system. (See "Specifying the Character Set for
Character Data Types" on page 4-6 for notes on character sets and collations. See the
documentation for your underlying storage system for details on any supported
collations.)

HAVING search_condition
The HAVING clause allows conditions to be set on the groups returned by the GROUP
BY clause. If the HAVING clause is used without the GROUP BY clause, the implicit
group against which the search condition is evaluated is all the rows returned by the
WHERE clause.

A condition of the HAVING clause can compare one aggregate function value with
another aggregate function value or a constant.

-- select customer number and number of orders for all
-- customers who had more than 10 orders prior to
-- March 31st, 1991.

SELECT cust_no, count(*)
 FROM orders
 WHERE order_date < to_date ('3/31/1991')
 GROUP BY cust_no
 HAVING count (*) > 10 ;

UNION [ALL]
Appends the result table from one query expression to the result table from another.

The two query expressions must have the same number of columns in their result table,
and those columns must have the same or compatible data types.

The final result table contains the rows from the second query expression appended to
the rows from the first. By default, the result table does not contain any duplicate rows
from the second query expression. Specify UNION ALL to include duplicate rows in the
result table.

-- Get a merged list of customers and suppliers.

Overview

4–18 SQL Language Elements

 SELECT name, street, state, zip
 FROM customer
 UNION
 SELECT name, street, state, zip
 FROM supplier ;

-- Get a list of customers and suppliers
-- with duplicate entries for those customers who are
-- also suppliers.

 SELECT name, street, state, zip
 FROM customer
 UNION ALL
 SELECT name, street, state, zip
 FROM supplier ;

INTERSECT
Limits rows in the final result table to those that exist in the result tables from both query
expressions.

The two query expressions must have the same number of columns in their result table,
and those columns must have the same or compatible data types.

-- Get a list of customers who are also suppliers.

 SELECT name, street, state, zip
 FROM customer
 INTERSECT
 SELECT name, street, state, zip
 FROM supplier ;

MINUS
Limits rows in the final result table to those that exist in the result table from the first
query expression minus those that exist in the second. In other words, the MINUS
operator returns rows that exist in the result table from the first query expression but that
do not exist in the second.

The two query expressions must have the same number of columns in their result table,
and those columns must have the same or compatible data types.

-- Get a list of suppliers who are not customers.

 SELECT name, street, state, zip
 FROM supplier ;
 MINUS
 SELECT name, street, state, zip
 FROM customer;

Authorization

The user executing a query expression must have any of the following privileges:

• DBA privilege

• SELECT permission on all the tables/views referred to in the query_expression.

Query Expressions

SQL Language Elements 4–19

SQL Compliance SQL-92. Extensions: { dharma ORDERED }clause,
MINUS set operator

Environment Embedded SQL, interactive SQL, ODBC applications

Related Statements CREATE TABLE, CREATE VIEW, INSERT, Search
Conditions, SELECT, UPDATE

4.4.1 Inner Joins
Description

Inner joins specify how the rows from one table reference are to be joined with the rows
of another table reference. Inner joins usually specify a search condition that limits the
number of rows from each table reference that become part of the result table generated
by the inner join operation.

If an inner join does not specify a search condition, the result table from the join
operation is the Cartesian product of rows in the tables, formed by concatenating every
row of one table with every row of the other table. Cartesian products (also called cross
products or cross joins) are not practically useful, but SQL logically processes all join
operations by first forming the Cartesian products of rows from tables participating in
the join.

If specified, the search condition is applied to the Cartesian product of rows from the
two tables. Only rows that satisfy the search condition become part of the result table
generated by the join.

A query expression can specify inner joins in either its FROM clause or in its WHERE
clause. For each formulation in the FROM clause, there is an equivalent syntax
formulation in the WHERE clause. Currently, not all syntax specified by the SQL-92
standard is allowed in the FROM clause.

Syntax

from_clause_inner_join ::
 | FROM table_ref CROSS JOIN table_ref
 | FROM table_ref [INNER] JOIN table_ref ON search_condition

where_clause_inner_join ::
 FROM table_ref, table_ref WHERE search_condition

Arguments

FROM table_ref CROSS JOIN table_ref
Explicitly specifies that the join generates the Cartesian product of rows in the two table
references. This syntax is equivalent to omitting the WHERE clause and a search
condition. The following queries illustrate the results of a simple CROSS JOIN operation
and an equivalent formulation that does not use the CROSS JOIN syntax:

Overview

4–20 SQL Language Elements

SELECT * FROM T1; -- Contents of T1
 C1 C2
 -- --
 10 15
 20 25
2 records selected
SELECT * FROM T2; -- Contents of T2
 C3 C4
 -- --
 10 BB
 15 DD
2 records selected
SELECT * FROM T1 CROSS JOIN T2; -- Cartesian product
 C1 C2 C3 C4
 -- -- -- --
 10 15 10 BB
 10 15 15 DD
 20 25 10 BB
 20 25 15 DD
4 records selected
SELECT * FROM T1, T2; -- Different formulation, same results
 C1 C2 C3 C4
 -- -- -- --
 10 15 10 BB
 10 15 15 DD
 20 25 10 BB
 20 25 15 DD
4 records selected

FROM table_ref [INNER] JOIN table_ref ON search_condition
FROM table_ref, table_ref WHERE search_condition
These two equivalent syntax constructions both specify search_condition for restricting
rows that will be in the result table generated by the join. In the first format, INNER is
optional and has no effect. There is no difference between the WHERE form of inner
joins and the JOIN ON form.

Equi-joins

An equi-join specifies that values in one table equal some corresponding column's
values in the other:

-- For customers with orders, get their name and order info, :
SELECT customer.cust_no, customer.name,
 orders.order_no, orders.order_date
 FROM customers INNER JOIN orders
 ON customer.cust_no = orders.cust_no ;

-- Different formulation, same results:
SELECT customer.cust_no, customer.name,
 orders.order_no, orders.order_date
 FROM customers, orders
 WHERE customer.cust_no = orders.cust_no ;

Self joins

A self join, or auto join, joins a table with itself. If a WHERE clause specifies a self join,
the FROM clause must use aliases to have two different references to the same table:

Query Expressions

SQL Language Elements 4–21

-- Get all the customers who are from the same city as customer SMITH:
 SELECT y.cust_no, y.name
 FROM customer AS x INNER JOIN customer AS y
 ON x.name = 'SMITH' AND y.city = x.city ;

-- Different formulation, same results:
 SELECT y.cust_no, y.name
 FROM customer x, customer y
 WHERE x.name = 'SMITH' AND y.city = x.city ;

4.4.2 Outer Joins
Description

An outer join between two tables returns more information than a corresponding inner
join. An outer join returns a result table that contains all the rows from one of the tables
even if there is no row in the other table that satisfies the join condition.

In a left outer join, the information from the table on the left is preserved: the result table
contains all rows from the left table even if some rows do not have matching rows in the
right table. Where there are no matching rows in the left table, SQL generates null
values.

In a right outer join, the information from the table on the right is preserved: the result
table contains all rows from the right table even if some rows do not have matching rows
in the left table. Where there are no matching rows in the right table, SQL generates null
values.

SQL supports two forms of syntax to support outer joins:

• In the WHERE clause of a query expression, specify the outer join operator (+) after
the column name of the table for which rows will not be preserved in the result table.
Both sides of an outer-join search condition in a WHERE clause must be simple
column references. This syntax is similar to Oracle's SQL syntax, and allows both
left and right outer joins.

• For left outer joins only, in the FROM clause, specify the LEFT OUTER JOIN clause
between two table names, followed by a search condition. The search condition can
contain only the join condition between the specified tables.

Dharma's SQL implementation does not support full (two-sided) outer joins.

Syntax

from_clause_inner_join ::
 FROM table_ref LEFT OUTER JOIN table_ref ON search_condition

where_clause_inner_join ::
 WHERE [table_name.]column (+) = [table_name.]column
 | WHERE [table_name.]column = [table_name.]column (+)

Examples

The following example shows a left outer join. It displays all the customers with their
orders. Even if there is not a corresponding row in the orders table for each row in the
customer table, NULL values are displayed for the orders.order_no and
orders.order_date columns.

Overview

4–22 SQL Language Elements

SELECT customer.cust_no, customer.name, orders.order_no,
 orders.order_date
 FROM customers, orders
 WHERE customer.cust_no = orders.cust_no (+) ;

The following series of examples illustrates the outer join syntax:

SELECT * FROM T1; -- Contents of T1
C1 C2
-- --
10 15
20 25
2 records selected

SELECT * FROM T2; -- Contents of T2
C3 C4
-- --
10 BB
15 DD
2 records selected

-- Left outer join
SELECT * FROM T1 LEFT OUTER JOIN T2 ON T1.C1 = T2.C3;
C1 C2 C3 C4
-- -- -- --
10 15 10 BB
20 25
2 records selected

 -- Left outer join: different formulation, same results
 SELECT * FROM T1, T2 WHERE T1.C1 = T2.C3 (+);
C1 C2 C3 C4
-- -- -- --
10 15 10 BB
20 25
2 records selected

 -- Right outer join
 SELECT * FROM T1, T2 WHERE T1.C1 (+) = T2.C3;
C1 C2 C3 C4
-- -- -- --
10 15 10 BB
 15 DD
2 records selected

4.5 Search Conditions

Description

A search condition specifies a condition that is true or false about a given row or group
of rows. Query expressions and UPDATE statements can specify a search condition.
The search condition restricts the number of rows in the result table for the query
expression or UPDATE statement.

Search conditions contain one or more predicates. The predicates that can be part of a
search condition are described in the following subsections.

Search Conditions

SQL Language Elements 4–23

Syntax

search_condition ::
 [NOT] predicate
 [{ AND | OR } { predicate | (search_condition) }]
predicate ::
 basic_predicate
| quantified_predicate
| between_predicate
| null_predicate
| like_predicate
| contains_predicate
| exists_predicate
| in_predicate
| outer_join_predicate

4.5.1 Logical Operators: OR, AND, NOT
Logical operators combine multiple search conditions. SQL evaluates multiple search
conditions in this order:

1. Search conditions enclosed in parentheses. If there are nested search conditions in
parentheses, SQL evaluates the innermost search condition first.

2. Search conditions preceded by NOT

3. Search conditions combined by AND

4. Search conditions combined by OR

Examples

SELECT *
 FROM customer
 WHERE name = 'LEVIEN' OR name = 'SMITH' ;
SELECT *
 FROM customer
 WHERE city = 'PRINCETON' AND state = 'NJ' ;
SELECT *
 FROM customer
 WHERE NOT (name = 'LEVIEN' OR name = 'SMITH') ;

4.5.2 Relational Operators
Relational operators specify how SQL compares expressions in basic and quantified
predicates.

Syntax

relop ::
 =
| <> | != | ^=
| <
| <=
| >
| >=

Overview

4–24 SQL Language Elements

Relational
Operator Predicate is:

= True if the two expressions are equal.

<> | != | ^= True if the two expressions are not equal. The
operators != and ^= are equivalent to <>.

< True if the first expression is less than the
second expression..

<= True if the first expression is less than or equal
to the second expression.

> True if the first expression is greater than the
second expression.

>= True if the first expression is greater than or
equal to the second expression.

See "Basic Predicate" and "Quantified Predicate" for more information.

4.5.3 Basic Predicate
Description

A basic predicate compares two values using a relational operator (see "Relational
Operators"). If a basic predicate specifies a query expression, then the query expression
must return a single value. Basic predicates often specify an inner join. See "Inner Joins"
for more detail.

If the value of any expression is null or the query_expression does not return any value,
then the result of the predicate is set to false.

Basic predicates that compare two character expressions can include an optional
COLLATE clause. The COLLATE clause specifies a collation sequence supported by the
underlying storage system. (See "Specifying the Character Set for Character Data Types"
on page 4-6 for notes on character sets and collations. See the documentation for your
underlying storage system for details on any supported collations.)

Syntax

basic_predicate ::
 expr relop { expr | (query_expression) } [COLLATE collation_name]

4.5.4 Quantified Predicate
Description

The quantified predicate compares a value with a collection of values using a relational
operator (see "Relational Operators"). A quantified predicate has the same form as a
basic predicate with the query_expression being preceded by ALL, ANY or SOME
keyword. The result table returned by query_expression can contain only a single column.

Search Conditions

SQL Language Elements 4–25

When ALL is specified the predicate evaluates to true if the query_expression returns no
values or the specified relationship is true for all the values returned.

When SOME or ANY is specified the predicate evaluates to true if the specified
relationship is true for at least one value returned by the query_expression. There is no
difference between the SOME and ANY keywords. The predicate evaluates to false if the
query_expression returns no values or the specified relationship is false for all the values
returned.

Syntax

quantified_predicate ::
 expr relop { ALL | ANY | SOME } (query_expression)

Example

10 < ANY (SELECT COUNT(*)
 FROM order_tbl
 GROUP BY custid
)

4.5.5 BETWEEN Predicate
Description

The BETWEEN predicate can be used to determine if a value is within a specified value
range or not. The first expression specifies the lower bound of the range and the second
expression specifies the upper bound of the range.

The predicate evaluates to true if the value is greater than or equal to the lower bound of
the range, or less than or equal to the upper bound of the range.

Syntax

between_predicate ::
 expr [NOT] BETWEEN expr AND expr

Example

salary BETWEEN 2000.00 AND 10000.00

4.5.6 NULL Predicate
Description

The NULL predicate can be used for testing null values of database table columns.

Syntax

null_predicate ::
 column_name IS [NOT] NULL

Example

contact_name IS NOT NULL

Overview

4–26 SQL Language Elements

4.5.7 CONTAINS Predicate
Description

The SQL CONTAINS predicate is an extension to the SQL standard that allows storage
systems to provide search capabilities on character and binary data. See the
documentation for the underlying storage system for details on support, if any, for the
CONTAINS predicate.

Syntax

column_name [NOT] CONTAINS 'string'

Notes

• column_name must be one of the following data types: CHARACTER, VARCHAR,
LONG VARCHAR, BINARY, VARBINARY, or LONG VARBINARY.

• There must be an index defined for column_name, and the CREATE INDEX statement
for the column must include the TYPE clause, and specify an index type that
indicates to the underlying storage system that this index supports CONTAINS
predicates. See the documentation for your storage system for the correct TYPE
clause for indexes that support CONTAINS predicates.

• The format of the quoted string argument and the semantics of the CONTAINS
predicate are defined by the underlying storage system.

4.5.8 LIKE Predicate
Description

The LIKE predicate searches for strings that have a certain pattern. The pattern is
specified after the LIKE keyword in a string constant. The pattern can be specified by a
string in which the underscore (_) and percent sign (%) characters have special
semantics.

The ESCAPE clause can be used to disable the special semantics given to characters ' _ '
and ' % '. The escape character specified must precede the special characters in order to
disable their special semantics.

Syntax

like_predicate ::
 column_name [NOT] LIKE string_constant
 [ESCAPE escape-character]

Notes

• The column name specified in the LIKE predicate must refer to a character string
column.

• A percent sign in the pattern matches zero or more characters of the column string.

• A underscore sign in the pattern matches any single character of the column string.

Examples

cust_name LIKE '%Computer%'

Search Conditions

SQL Language Elements 4–27

cust_name LIKE '___'

item_name LIKE '%_%' ESCAPE '\'

In the first example, for all strings with the substring Computer, the predicate will
evaluate to true. In the second example, for all strings which are exactly three characters
long, the predicate will evaluate to true. In the third example, the backslash character ' \
' has been specified as the escape character, which means that the special interpretation
given to the character ' _ ' is disabled. The pattern will evaluate to TRUE if the column
item_name has embedded underscore characters.

4.5.9 EXISTS Predicate
Description

The EXISTS predicate can be used to check for the existence of specific rows. The
query_expression returns rows rather than values. The predicate evaluates to true if the
number of rows returned by the query_expression is non zero.

Syntax

exists_predicate ::
 EXISTS (query_expression)

Example

EXISTS (SELECT * FROM order_tbl
 WHERE order_tbl.custid = :custid)

In this example, the predicate will evaluate to true if the specified customer has any
orders.

4.5.10 IN Predicate
Description

The IN predicate can be used to compare a value with a set of values. If an IN predicate
specifies a query expression, then the result table it returns can contain only a single
column.

Syntax

in_predicate ::
 expr [NOT] IN { (query_expression) |
 (constant , constant [, ...]) }

Example

address.state IN ('MA', 'NH')

Overview

4–28 SQL Language Elements

4.5.11 Outer Join Predicate
Description

An outer join predicate specifies two tables and returns a result table that contains all of
the rows from one of the tables, even if there is no matching row in the other table. See
"Outer Joins" for more information.

Syntax

outer_join_predicate ::
 [table_name.] column = [table_name.] column (+)
 | [table_name.] column (+) = [table_name.] column

4.6 Expressions

Description

An expression is a symbol or string of symbols used to represent or calculate a single
value in an SQL statement. When you specify an expression in a statement, SQL
retrieves or calculates the value represented by the expression and uses that value when
it executes the statement.

Expressions are also called scalar expressions or value expressions.

Syntax

expr ::
[{ table_name | alias } .] column-name

| character-literal
| numeric-literal
| date-time-literal
| aggregate-function
| scalar-function
| concatenated-char-expr
| numeric-arith-expr
| date-arith-expr
| conditional-expr
| (expr)

Arguments

[{ table_name | alias } .] column-name
A column in a table.

You can qualify column names with the name of the table they belong to:

SELECT CUSTOMER.CUSTOMER_ID FROM CUSTOMERS

You must qualify a column name if it occurs in more than one table specified in the
FROM clause:

SELECT CUSTOMER.CUSTOMER_ID
 FROM CUSTOMERS, ORDERS

Qualified column names are always allowed even when they are not required.

Expressions

SQL Language Elements 4–29

You can also qualify column names with an alias. Aliases are also called correlation
names.

The FROM clause of a query expression can specify an optional alias after the table
name (see "Query Expressions" for details on query expressions). If you specify an alias,
you must use it—not the table name—to qualify column names that refer to the table.
Query expressions that join a table with itself must use aliases to distinguish between
references to column names.

The following example shows a query expression that joins the table customer with itself.
It uses the aliases x and y and returns information on customers in the same city as
customer SMITH:

SELECT y.cust_no, y.name
 FROM customer x, customer y
 WHERE x.name = 'SMITH'
 AND y.city = x.city ;

character-literal | numeric-literal | date-time-literal
Literals that specify a constant value. See "Literals" for details on specifying literals.

aggregate-function | scalar function
An SQL function. See "Functions".

concatenated-char-expr
An expression that concatenates multiple character expressions into a single character
string. See “Concatenated Character Expressions” on page 4-32.

numeric-arith-expr
An expression that computes a value from numeric values. See "Numeric Arithmetic
Expressions" on page 4-33.

date-arith-expr
An expression that computes a value from date-time values. See "Date Arithmetic
Expressions".

conditional-expr
An expression that evaluates a search condition or expression and returns one of
multiple possible results depending on that evaluation. See "Conditional Expressions".

(expr)
An expression enclosed in parentheses. SQL evaluates expressions in parentheses first.

4.6.1 Concatenated Character Expressions
Description

The || concatenation operator (two vertical bars) concatenates the two character
expressions it separates.

The concatenation operator is similar to the CONCAT scalar function (see page 4-56).
However, the concatenation operator allows easy concatenation of more than two
character expressions, while the CONCAT scalar function requires nesting.

Overview

4–30 SQL Language Elements

Syntax

concatenated-char-expr ::
{ character-literal | character-expr } || { character-literal | character-expr }
[{ character-literal | character-expr } || { character-literal | character-expr }] […]

Arguments

character-literal
A character literal. See "Character String Literals" on page 4-36 for details on specifying
character literals.

character-expr
Any expression that evaluates to a character string (see "Data Types" for details of
character data types), including column names and scalar functions that return a
character string.

Examples

ISQL> SELECT 'Today''s date is ' || TO_CHAR(SYSDATE) FROM SYSCALCTABLE;
TODAY'S DATE IS 08/17/1998

Today's date is 08/17/1998
1 record selected

4.6.2 Numeric Arithmetic Expressions
Description

Numeric arithmetic expressions compute a value using addition, subtraction,
multiplication, and division operations on numeric literals and expressions that
evaluate to any numeric data type.

Syntax

numeric-arith-expr ::
[+ | -] { numeric-literal | numeric-expr } [{ + | - | * | / } numeric-arith-expr]

Arguments

[+ | -]
Unary plus or minus operator

numeric-literal
A numeric literal. See "Numeric Literals" for details on specifying numeric literals.

numeric-expr
Any expression that evaluates to a numeric data type (see "Data Types" for details of
numeric data types), including:

• Column names

• Subqueries that return a single value

• Aggregate functions

• CAST or CONVERT operations to numeric data types

• Other scalar functions that return a numeric data type

Expressions

SQL Language Elements 4–31

{ + | - | * | \ }
Addition, subtraction, multiplication, or subtraction operator. SQL evaluates numeric
arithmetic expressions in the following order:

• Unary plus or minus

• Expressions in parentheses

• Multiplication and division, from left to right

• Addition and subtraction, from left to right

4.6.3 Date Arithmetic Expressions
Description

Date arithmetic expressions compute the difference between date-time expressions in
terms of days or milliseconds. SQL supports these forms of date arithmetic:

• Addition and subtraction of integers to and from date-time expressions

• Subtraction of a date-time expression from another

Syntax

date_arith_expr ::
 date_time_expr { + | - } int_expr
| date_time_expr - date_time_expr

Arguments

date_time_expr
An expression that returns a value of type DATE or TIME or TIMESTAMP. A single
date-time expression can not mix data types. All elements of the expression must be the
same data type.

Date-time expressions can contain date-time literals, but they must be converted to
DATE or TIME using the CAST, CONVERT, or TO_DATE functions (see the following
examples, and "CAST" and "CONVERT function (extension)").

int_expr
An expression that returns an integer value. SQL interprets the integer differently
depending on the data type of the date-time expression:

• For DATE expressions, integers represent days

• For TIME expressions, integers represent milliseconds

• For TIMESTAMP expressions, integers represent milliseconds

Examples

The following example manipulates DATE values using date arithmetic. SQL interprets
integers as days and returns date differences in units of days:

SELECT C1, C2, C1-C2 FROM DTEST

c1 c2 c1-c2

Overview

4–32 SQL Language Elements

1956-05-07 1952-09-29 1316

select sysdate,
 sysdate - 3 ,
 sysdate - cast ('9/29/52' as date)
from dtest;

sysdate sysdate-3 sysdate-convert(date,9/29/52)

1995-03-24 1995-03-21 15516

The following example manipulates TIME values using date arithmetic. SQL interprets
integers as milliseconds and returns time differences in milliseconds:

select systime,
 systime - 3000,
 systime - cast ('15:28:01' as time)
from dtest;

systime systime-3000 systime-convert(time,15:28:01)

15:28:09 15:28:06 8000

4.6.4 Conditional Expressions
Conditional expressions are a subset of scalar functions that generate different results
depending on the value of their arguments. They provide some of the flexibility of
traditional programming constructs to allow expressions to return alternate results
depending on the value of their arguments.

The following scalar functions provide support for conditional expressions. See the
discussion for each function in "Scalar Functions" for details.

CASE
CASE is the most general conditional expression. It specifies a series of search
conditions and associated expressions. SQL returns the value specified by the first
expression whose associated search condition evaluates as true. If none of the
expressions evaluate as true, the CASE expression returns a null value (or the value of
some other default expression if the CASE expression includes the ELSE clause).

All the other conditional expressions can also be expressed as CASE expressions.

DECODE
DECODE provides a subset of the functionality of CASE that is compatible with Oracle
SQL syntax. DECODE is not SQL-92 compatible.

NULLIF
NULLIF substitutes a null value for an expression if it is equal to a second expression.

COALESCE
COALESCE specifies a series of expressions. SQL returns the first expression whose
value is not null. If all the expressions evaluate as null, COALESCE returns a null value.

IFNULL
IFNULL substitutes a specified value if an expression evaluates as null. If the
expression is not null, IFNULL returns the value of the expression.

Literals

SQL Language Elements 4–33

4.7 Literals

Literals are a type of expression that specify a constant value (they are also called
constants). You can specify literals wherever SQL syntax allows expressions. Some
SQL constructs allow literals but prohibit other forms of expressions.

There are three types of literals:

• Numeric

• Character string

• Date-time

The following sections discuss each type of literal.

4.7.1 Numeric Literals
A numeric literal is a string of digits that SQL interprets as a decimal number. SQL
allows the string to be in a variety of formats, including scientific notation.

Syntax

[+|-]{[0-9][0-9]...}[.[0-9][0-9]...][[E|e][+|-][0-9]{[0-9]}]

Examples

The following are all valid numeric strings:

123
123.456
-123.456
12.34E-04

4.7.2 Character String Literals
A character string literal is a string of characters enclosed in single quotation marks (').

To include a single quotation mark in a character-string literal, precede it with an
additional single quotation mark. The following SQL examples show embedding
quotation marks in character-string literals:

insert into quote values('unquoted literal');
insert into quote values('''single-quoted literal''');
insert into quote values('"double-quoted literal"');
insert into quote values('O''Hare');
select * from quote;

c1
unquoted literal
'single-quoted literal'
"double-quoted literal"
O'Hare

To insert a character-string literal that spans multiple lines, enclose each line in single
quotation marks. The following SQL examples shows this syntax, as well as embedding
quotation marks in one of the lines:

Overview

4–34 SQL Language Elements

insert into quote2 values ('Here''s a very long character string '
 'literal that will not fit on a single line.');
1 record inserted.
select * from quote2;
C1
--
Here's a very long character string literal that will not fit on a single
line.

4.7.3 Date-Time Literals
SQL supports special formats for literals to be used in conjunction with date-time data
types. Basic predicates and the VALUES clause of INSERT statements can specify date
literals directly for comparison and insertion into tables. In other cases, you need to
convert date literals to the appropriate date-time data type with the CAST, CONVERT, or
TO_DATE scalar functions.

Enclose date-time literals in single quotation marks.

4.7.3.1 Date Literals

Date literals specify a day, month, and year. By default, SQL supports any of the
following formats, enclosed in single quotation marks ('). Check with your
administrator to see if the set of supported formats has been changed by setting the
TPE_DFLT_DATE runtime variable.

Syntax

date-literal ::
{d 'yyyy-mm-dd'}

| mm-dd-yyyy
| mm/dd/yyyy
| yyyy-mm-dd
| yyyy/mm/dd
| dd-mon-yyyy
| dd/mon/yyyy

Arguments

{d 'yyyy-mm-dd'}
A date literal enclosed in an escape clause compatible with ODBC. Precede the literal
string with an open brace ({) and a lowercase d. End the literal with a close brace. For
example:

INSERT INTO DTEST VALUES ({d '1994-05-07'})

If you use the ODBC escape clause, you must specify the date using the format yyyy-mm-
dd.

dd
The day of month as a 1- or 2-digit number (in the range 01-31).

mm
The month value as a 1- or 2-digit number (in the range 01-12).

Literals

SQL Language Elements 4–35

mon
The first 3 characters of the name of the month (in the range 'JAN' to 'DEC').

yyyy
The year as 4-digit number. By default, SQL generates an Invalid date string
error if the year is specified as anything but 4 digits. Check with your administrator to
see if this default behavior has been changed by setting the DH_Y2K_CUTOFF runtime
variable.

Examples

The following SQL examples show some of the supported formats for date literals:

CREATE TABLE T2 (C1 DATE, C2 TIME);
INSERT INTO T2 (C1) VALUES('5/7/56');
INSERT INTO T2 (C1) VALUES('7/MAY/1956');
INSERT INTO T2 (C1) VALUES('1956/05/07');
INSERT INTO T2 (C1) VALUES({d '1956-05-07'});
INSERT INTO T2 (C1) VALUES('29-sEP-1952');
SELECT C1 FROM T2;

c1
1956-05-07
1956-05-07
1956-05-07
1956-05-07
1952-09-29

4.7.3.2 Time Literals

Time literals specify an hour, minute, second, and millisecond, using the following
format, enclosed in single quotation marks ('):

Syntax

time-literal ::
{t 'hh:mi:ss'}

| hh:mi:ss[:mls]

Arguments

{t 'hh:mi:ss'}
A time literal enclosed in an escape clause compatible with ODBC. Precede the literal
string with an open brace ({) and a lowercase t. End the literal with a close brace. For
example:

INSERT INTO TTEST VALUES ({t '23:22:12'})

If you use the ODBC escape clause, you must specify the time using the format hh:mi:ss.

hh
The hour value as a 1- or 2-digit number (in the range 00 to 23).

mi
The minute value as a 1- or 2-digit number (in the range 00 to 59).

Overview

4–36 SQL Language Elements

ss
The seconds value as a 1- or 2-digit number (in the range 00 to 59).

mls
The milliseconds value as a 1- to 3-digit number (in the range 000 to 999).

Examples

The following SQL examples show some of the formats SQL will and will not accept for
time literals:

INSERT INTO T2 (C2) VALUES('3');
error(-20234): Invalid time string
INSERT INTO T2 (C2) VALUES('8:30');
error(-20234): Invalid time string
INSERT INTO T2 (C2) VALUES('8:30:1');
INSERT INTO T2 (C2) VALUES('8:30:');
error(-20234): Invalid time string
INSERT INTO T2 (C2) VALUES('8:30:00');
INSERT INTO T2 (C2) VALUES('8:30:1:1');
INSERT INTO T2 (C2) VALUES({t'8:30:1:1'});

SELECT C2 FROM T2;

c2
08:30:01
08:30:00
08:30:01
08:30:01

4.7.3.3 Timestamp Literals

Timestamp literals specify a date and a time separated by a space, enclosed in single
quotation marks ('):

Syntax

{ts 'yyyy-mm-dd hh:mi:ss'}
| ' date-literal time-literal '

Arguments

{ts 'yyyy-mm-dd hh:mi:ss'}
A timestamp literal enclosed in an escape clause compatible with ODBC. Precede the
literal string with an open brace ({) and a lowercase ts. End the literal with a close
brace. For example:

INSERT INTO DTEST
VALUES ({ts '1956-05-07 10:41:37'})

If you use the ODBC escape clause, you must specify the timestamp using the format
yyyy-mm-dd hh:mi:ss.

date-literal
A date literal.

time-literal
A time literal.

Date-Time Format Strings

SQL Language Elements 4–37

Example

SELECT * FROM DTEST WHERE C1 = {ts '1956-05-07 10:41:37'}

4.8 Date-Time Format Strings

The TO_CHAR scalar function supports a variety of format strings to control the output
of date and time values. The format strings consist of keywords that SQL interprets and
replaces with formatted values.

The format strings are case sensitive. For instance, SQL replaces 'DAY' with all
uppercase letters, but follows the case of 'Day'.

Supply the format strings, enclosed in single quotation marks, as the second argument to
the TO_CHAR function. For example:

SELECT C1 FROM T2;
C1
--
09/29/1952
1 record selected
SELECT TO_CHAR(C1, 'Day, Month ddth'),
 TO_CHAR(C2, 'HH12 a.m.') FROM T2;
TO_CHAR(C1,DAY, MONTH DDTH) TO_CHAR(C2,HH12 A.M.)
--------------------------- ---------------------
Monday , September 29th 02 p.m.
1 record selected

For details of the TO_CHAR function, see "TO_CHAR" on page 4-96.

4.8.1 Date Format Strings
A date format string can contain any of the following format keywords along with other
characters. The format keywords in the format string are replaced by corresponding
values to get the result. The other characters are displayed as literals.

CC The century as a 2-digit number.

YYYY The year as a 4-digit number.

YYY The last 3 digits of the year.

YY The last 2 digits of the year.

Y The last digit of the year.

Y,YYY The year as a 4-digit number with a comma after the
first digit.

Q The quarter of the year as 1-digit number (with values
1, 2, 3, or 4).

MM The month value as 2-digit number (in the range 01-
12).

Overview

4–38 SQL Language Elements

MONTH The name of the month as a string of 9 characters
('JANUARY' to 'DECEMBER ').

MON The first 3 characters of the name of the month (in the
range 'JAN' to 'DEC').

WW The week of year as a 2-digit number (in the range 01-
52).

W The week of month as a 1-digit number (in the range
1-5).

DDD The day of year as a 3-digit number (in the range 001-
365).

DD The day of month as a 2-digit number (in the range
01-31).

D The day of week as a 1-digit number (in the range 1-7,
1 for Sunday and 7 for Saturday).

DAY The day of week as a 9 character string (in the range
'SUNDAY' to 'SATURDAY '.

DY The day of week as a 3 character string (in the range
'SUN' to 'SAT').

J The Julian day (number of days since DEC 31, 1899)
as an 8 digit number.

TH When added to a format keyword that results in a
number, this format keyword ('TH') is replaced by the
string 'ST', 'ND', 'RD' or 'TH' depending on the last
digit of the number.

Example:

SELECT C1 FROM T2;
C1
--
09/29/1952
1 record selected
SELECT TO_CHAR(C1, 'Day, Month ddth'),
 TO_CHAR(C2, 'HH12 a.m.') FROM T2;
TO_CHAR(C1,DAY, MONTH DDTH) TO_CHAR(C2,HH12 A.M.)
--------------------------- ---------------------
Monday , September 29th 02 p.m.
1 record selected

4.8.2 Time Format Strings
A time format string can contain any of the following format keywords along with other
characters. The format keywords in the format string are replaced by corresponding
values to get the result. The other characters are displayed as literals.

AM The string 'AM' or 'PM' depending on whether time

Functions

SQL Language Elements 4–39

PM corresponds to forenoon or afternoon.

A.M.
P.M.

The string 'A.M.' or 'P.M.' depending on whether time
corresponds to forenoon or afternoon.

HH12 The hour value as a 2-digit number (in the range 00 to
11).

HH
HH24

The hour value as a 2-digit number (in the range 00 to
23).

MI The minute value as a 2-digit number (in the range 00 to
59).

SS The seconds value as a 2-digit number (in the range 00
to 59).

SSSSS The seconds from midnight as a 5-digit number (in the
range 00000 to 86399).

MLS The milliseconds value as a 3-digit number (in the range
000 to 999).

Example:

SELECT C1 FROM T2;
C1
--
09/29/1952
1 record selected
SELECT TO_CHAR(C1, 'Day, Month ddth'),
 TO_CHAR(C2, 'HH12 a.m.') FROM T2;
TO_CHAR(C1,DAY, MONTH DDTH) TO_CHAR(C2,HH12 A.M.)
--------------------------- ---------------------
Monday , September 29th 02 p.m.
1 record selected

4.9 Functions

Functions are a type of SQL expression that return a value based on the argument they
are supplied. SQL supports two types of functions:

• Aggregate functions calculate a single value for a collection of rows in a result table
(if the function is in a statement with a GROUP BY clause, it returns a value for each
group in the result table). Aggregate functions are also called set or statistical
functions. Aggregate functions cannot be nested.

• Scalar functions calculate a value based on another single value. Scalar functions
are also called value functions. Scalar functions can be nested.

Overview

4–40 SQL Language Elements

4.9.1 Aggregate Functions

4.9.1.1 AVG

Syntax

AVG ({ [ALL] expression } | { DISTINCT column_ref })

Description

The aggregate function AVG computes the average of a collection of values. The
keyword DISTINCT specifies that the duplicate values are to be eliminated before
computing the average.

• Null values are eliminated before the average value is computed. If all the values are
null, the result is null.

• The argument to the function must be of type SMALLINT, INTEGER, NUMERIC,
REAL or FLOAT.

• The result is of type NUMERIC.

Example

SELECT AVG (salary)
 FROM employee
 WHERE deptno = 20 ;

4.9.1.2 COUNT

Syntax

COUNT ({ [ALL] expression } | { DISTINCT column_ref } | *)

Description

The aggregate function COUNT computes either the number of rows in a group of rows
or the number of non-null values in a group of values.

• The keyword DISTINCT specifies that the duplicate values are to be eliminated
before computing the count.

• If the argument to COUNT function is '*', then the function computes the count of the
number of rows in group.

• If the argument to COUNT function is not '*', then null values are eliminated before
the number of rows is computed.

• The argument column_ref or expression can be of any type.

• The result of the function is of INTEGER type. The result is never null.

Example

SELECT COUNT (*)
 FROM orders
 WHERE order_date = SYSDATE ;

Functions

SQL Language Elements 4–41

4.9.1.3 MAX

Syntax

MAX ({ [ALL] expression } | { DISTINCT column_ref })

Description

The aggregate function MAX returns the maximum value in a group of values.

• The specification of DISTINCT has no effect on the result.

• The argument column_ref or expression can be of any type.

• The result of the function is of the same data type as that of the argument.

• The result is null if the result set is empty or contains only null values.

Example

SELECT order_date, product, MAX (qty)
 FROM orders
 GROUP BY order_date, product ;

4.9.1.4 MIN

Syntax

MIN ({ [ALL] expression } | { DISTINCT column_ref })

Description

The aggregate function MIN returns the minimum value in a group of values.

• The specification of DISTINCT has no effect on the result.

• The argument column_ref or expression can be of any type.

• The result of the function is of the same data type as that of the argument.

• The result is null if the result set is empty or contains only null values.

Example

SELECT MIN (salary)
 FROM employee
 WHERE deptno = 20 ;

4.9.1.5 SUM

Syntax

SUM ({ [ALL] expression } | { DISTINCT column_ref })

Description

The aggregate function SUM returns the sum of the values in a group. The keyword
DISTINCT specifies that the duplicate values are to be eliminated before computing the
sum.

• The argument column_ref or expression can be of any type.

Overview

4–42 SQL Language Elements

• The result of the function is of the same data type as that of the argument except that
the result is of type INTEGER when the argument is of type SMALLINT or TINYINT.

• The result can have a null value.

Example

SELECT SUM (amount)
 FROM orders
 WHERE order_date = SYSDATE ;

4.9.2 Scalar Functions

4.9.2.1 ABS function (ODBC compatible)

Syntax

ABS (expression)

Description

The scalar function ABS computes the absolute value of expression.

Example

SELECT ABS (MONTHS_BETWEEN (SYSDATE, order_date))
 FROM orders
 WHERE ABS (MONTHS_BETWEEN (SYSDATE, order_date)) > 3 ;

Notes

• The argument to the function must be of type TINYINT, SMALLINT, INTEGER,
NUMERIC, REAL or FLOAT.

• The result is of type NUMERIC.

• If the argument expression evaluates to null, the result is null.

4.9.2.2 ACOS function (ODBC compatible)

Syntax

ACOS (expression)

Description

The scalar function ACOS returns the arccosine of expression.

Functions

SQL Language Elements 4–43

Example

select acos (.5) 'Arccosine in radians' from syscalctable;
ARCCOSINE IN RAD

1.047197551196598
1 record selected
select acos (.5) * (180/ pi()) 'Arccosine in degrees' from syscalctable;
ARCCOSINE IN DEG

59.999999999999993
1 record selected

Notes

ACOS takes the ratio (expression) of two sides of a right triangle and returns the
corresponding angle. The ratio is the length of the side adjacent to the angle divided by
the length of the hypotenuse.

The result is expressed in radians and is in the range -Pi/2 to Pi/2 radians. To convert
degrees to radians, multiply degrees by Pi/180. To convert radians to degrees, multiply
radians by 180/Pi.

• expression must be in the range -1 to 1.

• expression must evaluate to an approximate numeric data type.

4.9.2.3 ADD_MONTHS function (extension)

Syntax

ADD_MONTHS (date_expression, integer_expression)

Description

The scalar function ADD_MONTHS adds to the date value specified by the
date_expression, the given number of months specified by integer_expression and returns
the resultant date value.

Example

 SELECT *
 FROM customer
 WHERE ADD_MONTHS (start_date, 6) > SYSDATE ;

Notes

• The first argument must be of DATE type.

• The second argument to the function must be of numeric type.

• The result is of type DATE.

• If any of the arguments evaluate to null, the result is null.

Overview

4–44 SQL Language Elements

4.9.2.4 ASCII function (ODBC compatible)

Syntax

ASCII (char_expression)

Description

The scalar function ASCII returns the ASCII value of the first character

of the given character expression.

Example

SELECT ASCII (zip)
 FROM customer ;

Notes

• The argument to the function must be of type character.

• The result is of type INTEGER.

• If the argument char_expression evaluates to null, the result is null.

4.9.2.5 ASIN function (ODBC compatible)

Syntax

ASIN (expression)

Description

The scalar function ASIN returns the arcsine of expression.

Example

select asin (1) * (180/ pi()) 'Arcsine in degrees' from syscalctable;
ARCSINE IN DEGRE

90.000000000000000
1 record selected
 select asin (1) 'Arcsine in radians' from syscalctable;
ARCSINE IN RADIA

1.570796326794897
1 record selected

Notes

ASIN takes the ratio (expression) of two sides of a right triangle and returns the
corresponding angle. The ratio is the length of the side opposite the angle divided by the
length of the hypotenuse.

The result is expressed in radians and is in the range -Pi/2 to Pi/2 radians. To convert
degrees to radians, multiply degrees by Pi/180. To convert radians to degrees, multiply
radians by 180/Pi.

• expression must be in the range -1 to 1.

• expression must evaluate to an approximate numeric data type.

Functions

SQL Language Elements 4–45

4.9.2.6 ATAN function (ODBC compatible)

Syntax

ATAN (expression)

Description

The scalar function ATAN returns the arctangent of expression.

Example

select atan (1) * (180/ pi()) 'Arctangent in degrees' from syscalctable;
ARCTANGENT IN DE

45.000000000000000
1 record selected
select atan (1) 'Arctangent in radians' from syscalctable;
ARCTANGENT IN RA

0.785398163397448
1 record selected

Notes

ATAN takes the ratio (expression) of two sides of a right triangle and returns the
corresponding angle. The ratio is the length of the side opposite the angle divided by the
length of the side adjacent to the angle.

The result is expressed in radians and is in the range -Pi/2 to Pi/2 radians. To convert
degrees to radians, multiply degrees by Pi/180. To convert radians to degrees, multiply
radians by 180/Pi.

• expression must be in the range -1 to 1.

• expression must evaluate to an approximate numeric data type.

4.9.2.7 ATAN2 function (ODBC compatible)

Syntax

ATAN2 (expression1 , expression2)

Description

The scalar function ATAN2 returns the arctangent of the x and y coordinates specified
by expression1 and expression2 .

Example

select atan2 (1,1) * (180/ pi()) 'Arctangent in degrees' from
syscalctable;
ARCTANGENT IN DE

45.000000000000000
1 record selected
select atan2 (1,1) 'Arctangent in radians' from syscalctable;
ARCTANGENT IN RA

0.785398163397448
1 record selected

Overview

4–46 SQL Language Elements

Notes

ATAN2 takes the ratio of two sides of a right triangle and returns the corresponding
angle. The ratio is the length of the side opposite the angle divided by the length of the
side adjacent to the angle.

expression1 and expression2 specify the x and y coordinates of the end of the hypotenuse
opposite the angle.

The result is expressed in radians and is in the range -Pi/2 to Pi/2 radians. To convert
degrees to radians, multiply degrees by Pi/180. To convert radians to degrees, multiply
radians by 180/Pi.

Both expression1 and expression2 must evaluate to approximate numeric data types.

4.9.2.8 CASE (SQL-92 Compatible)

Syntax

case-expr::
searched-case-expr | simple-case-expr

searched-case-expr::
CASE
 WHEN search_condition THEN { result-expr | NULL }
 [...]
 [ELSE expr | NULL]
END

simple-case-expr::
CASE primary-expr
 WHEN expr THEN { result-expr | NULL }
 [...]
 [ELSE expr | NULL]
END

Description

The CASE scalar function is a type of conditional expression. (See the topic on
Conditional Expressions for a summary of all the conditional expressions.)

The general form of the CASE scalar function specifies a series of search conditions and
associated result expressions. It is called a searched case expression. SQL returns the
value specified by the first result expression whose associated search condition
evaluates as true. If none of the search conditions evaluate as true, the CASE expression
returns a null value (or the value of some other default expression if the CASE
expression includes the ELSE clause).

CASE also supports syntax for a shorthand notation, called a simple case expression, for
evaluating whether one expression is equal to a series of other expressions.

Notes

• This function is not allowed in a GROUP BY clause

• Arguments to this function cannot be query expressions

Functions

SQL Language Elements 4–47

Arguments

CASE
The CASE keyword alone, not followed by primary-expr, specifies a searched case
expression. It must be followed by one or more WHEN-THEN clauses each that specify
a search condition and corresponding expression.

WHEN search_condition THEN { result-expr | NULL }
WHEN clause for searched case expressions. SQL evaluates search condition. If
search_condition evaluates as true, CASE returns the value specified by result-expr (or
null, if the clause specifies THEN NULL).

If search_condition evaluates as false, SQL evaluates the next WHEN-THEN clause, if
any, or the ELSE clause, if it is specified.

CASE primary-expr
The CASE keyword followed by an expression specifies a simple case expression. In a
simple case expression, one or more WHEN-THEN clauses specify two expressions.

A simple case expression can always be expressed as a searched case expression.
Consider the following general simple case expression:

CASE primary-expr
 WHEN expr1 THEN result-expr1
 WHEN expr2 THEN result-expr2
 ELSE expr3
END

The preceding simple case expression is equivalent to the following searched case
expression:

CASE
 WHEN primary-expr = expr1 THEN result-expr1
 WHEN primary-expr = expr2 THEN result-expr2
 ELSE expr3
END

WHEN expr THEN { result-expr | NULL }
WHEN clause for simple case expressions. SQL evaluates expr and compares it with
primary-expr specified in the CASE clause. If they are equal, CASE returns the value
specified by result-expr (or null, if the clause specifies THEN NULL).

If expr is not equal to primary-expr, SQL evaluates the next WHEN-THEN clause, if any,
or the ELSE clause, if it is specified.

[ELSE { expr | NULL }]
In both searched case expressions and simple case expressions, the ELSE clause
specifies an optional expression whose value SQL returns if none of the conditions
specified in WHEN-THEN clauses were satisfied. If the CASE expression omits the
ELSE clause, it is the same as specifying ELSE NULL.

Examples

The following example shows a searched case expression that assigns a label denoting
tables as system tables if they begin with the letters sys. Note that this example can not
be reformulated as a simple case expression, since it specifies a relational operator other
than =.

Overview

4–48 SQL Language Elements

SELECT tbl,
 CASE
 WHEN tbl like 'sys%' THEN 'System Table'
 ELSE 'Not System table'
 END
FROM systables;

TBL SEARCHED_CASE(TBLSY
--- -------------------
systblspaces System Table
systables System Table
syscolumns System Table
sysindexes System Table
sysdbauth System Table
systabauth System Table
syscolauth System Table
sysviews System Table
syssynonyms System Table
sysdblinks System Table
sys_keycol_usage System Table
sys_ref_constrs System Table
sys_chk_constrs System Table
sys_tbl_constrs System Table
sys_chkcol_usage System Table
sysdatatypes System Table
syscalctable System Table
systblstat System Table

The following example shows a searched case expression and an equivalent simple case
expression.

– Searched case expression:
SELECT tbl,

CASE
WHEN tbltype = 'S' THEN 'System Table'
ELSE 'Not System table'

End
FROM systables;
– Equivalent simple case expression:
SELECT tbl,

CASE tbltype
WHEN 'S' THEN 'System Table'
ELSE 'Not System table'

END
FROM systables;

4.9.2.9 CAST function (SQL-92 compatible)

Syntax

CAST ({ expression | NULL } AS data_type [(length)])

Description

The scalar function CAST converts an expression to another data type. The first
argument is the expression to be converted. The second argument is the target data type.

The length option for the data_type argument specifies the length for conversions to
CHAR and VARCHAR data types. If omitted, the default is 30 bytes.

Functions

SQL Language Elements 4–49

If the expression evaluates to null, the result of the function is null. Specifying NULL
with the CAST function is useful for set operations such as UNION that require two
table to have the same structure. CAST NULL allows you to specify a column of the
correct data type so a table with a similar structure to another, but with fewer columns,
can be in a union operation with the other table.

The CAST function provides a data-type-conversion mechanism compatible with the
SQL-92 standard.

Use the CONVERT function, enclosed in the ODBC escape clause {fn }, to specify ODBC-
compliant syntax for data type conversion. See the CONVERT (ODBC compatible)
function for more information.

Example

The following SQL example uses CAST to convert an integer field from a catalog table to
a character data type:

SELECT CAST(fld AS CHAR(25)), fld FROM systpe.syscalctable;

CONVERT(CHARACTER(25),FLD) FLD
-------------------------- ---
100 100
1 record selected

4.9.2.10 CEILING function (ODBC compatible)

Syntax

CEILING (expression)

Description

The scalar function CEILING returns the smallest integer greater than or equal to
expression.

Example

SELECT CEILING (32.5) 'Ceiling'
 FROM SYSTPE.SYSCALCTABLE;

Notes

• expression must evaluate to a numeric data type.

4.9.2.11 CHAR function (ODBC compatible)

Syntax

CHAR (integer_expression)

Description

The scalar function CHAR returns a character string with the first character having an
ASCII value equal to the argument expression. CHAR is identical to CHR but provides
ODBC-compatible syntax.

Overview

4–50 SQL Language Elements

Example

SELECT *
 FROM customer
 WHERE SUBSTR (zip, 1, 1) = CHAR (53) ;

Notes

• The argument to the function must be of type INTEGER, TINYINT, or SMALLINT.

• The result is of type character.

• If the argument integer_expression evaluates to null, the result is null.

4.9.2.12 CHARTOROWID (extension)

Syntax

CHARTOROWID (char_expression)

Description

The scalar function CHARTOROWID returns a ROWID contained in the input
argument in character form. The representation of a row identifier depends on the
storage manager. The format of the char_expression argument to this function varies
between storage managers.

Example

The following example shows the character-string format for a row identifier supplied
as an argument to CHARTOROWID. In this example, the format for a row identifier is
an integer (delimited as a character string by single quotes).

SELECT ROWID, FLD FROM SYSCALCTABLE;
ROWID FLD
----- ---
0 100
1 record selected
-- CHARTOROWID requires single quotes around its argument
SELECT * FROM SYSCALCTABLE WHERE ROWID = CHARTOROWID ('0');
 FLD

 100
1 record selected

Notes

• The argument to the function must be of type character.

• The result is of internal ROWID type as defined by the storage manager.

• If the argument char_expression evaluates to null, the result is null.

• The SQL statement execution returns error if the result of the input character
expression does not contain a character string in the proper format for a row
identifier, as defined by the storage manager.

Functions

SQL Language Elements 4–51

4.9.2.13 CHR function (extension)

Syntax

CHR (integer_expression)

Description

The scalar function CHR returns a character string with the first character having an
ASCII value equal to the argument expression.

Example

SELECT *
 FROM customer
 WHERE SUBSTR (zip, 1, 1) = CHR (53) ;

Notes

• The argument to the function must be of type INTEGER, TINYINT, or SMALLINT.

• The result is of type character.

• If the argument integer_expression evaluates to null, the result is null.

4.9.2.14 COALESCE (SQL-92 compatible)

Syntax

COALESCE (expression1, expression2 [, ...])

Description

The COALESCE scalar function is a type of conditional expression. (See the topic on
Conditional Expressions for a summary of all the conditional expressions.)

COALESCE specifies a series of expressions, and returns the first expression whose
value is not null. If all the expressions evaluate as null, COALESCE returns a null value.

The COALESCE syntax is shorthand notation for a common case that can also be
represented in a CASE expression. The following two formulations are equivalent:

COALESCE (expression1 , expression2 , expression3)

CASE
WHEN expression1 IS NOT NULL THEN expression1
WHEN expression2 IS NOT NULL THEN expression2
ELSE expression3

Example

SELECT COALESCE(end_date, start_date) from job_hist;

Notes

• This function is not allowed in a GROUP BY clause

• Arguments to this function cannot be query expressions

Overview

4–52 SQL Language Elements

4.9.2.15 CONCAT function (ODBC compatible)

Syntax

CONCAT (char_expression , char_expression)

Description

The scalar function CONCAT returns a concatenated character string formed by
concatenating argument one with argument two.

The CONCAT scalar function is similar to the concatenation operator (see page 4-32).
However, the concatenation operator allows easy concatenation of more than two
character expressions, while the CONCAT function requires nesting.

Example

SELECT name, empno, salary
 FROM customer
 WHERE project = CONCAT('US',proj_nam);

Notes

• Both the arguments must be of type CHARACTER or VARCHAR.

• The result is of type VARCHAR.

• If any of the argument expressions evaluates to null, the result is null.

• The trailing blanks for the first argument are removed.

4.9.2.17 CONVERT function (extension)

Syntax

CONVERT ('data_type[(length)]', expression)

Description

The scalar function CONVERT converts an expression to another data type. The first
argument is the target data type. The second argument is the expression to be converted
to that type.

The length option for the data_type argument specifies the length for conversions to
CHAR and VARCHAR data types. If omitted, the default is 30 bytes.

If the expression evaluates to null, the result of the function is null.

The CONVERT function syntax is similar to but not compatible with the ODBC
CONVERT function. Enclose the function in the ODBC escape clause {fn }, to specify
ODBC-compliant syntax. See the CONVERT function (ODBC compatible) topic for more
information.

Example

The following SQL example converts an integer field from a catalog table to a character
string:

Functions

SQL Language Elements 4–53

SELECT CONVERT('CHAR', fld), fld FROM systpe.syscalctable;
CONVERT(CHAR,FLD) FLD
----------------- ---
100 100
1 record selected
SELECT CONVERT('CHAR(35)', fld), fld
 FROM systpe.syscalctable;
CONVERT(CHAR(35),FLD) FLD
--------------------- ---
100 100
1 record selected

4.9.2.18 CONVERT function (ODBC compatible)

Syntax

{fn CONVERT (expression , data_type) }

data_type::
SQL_BIGINT

| SQL_BINARY
| SQL_BIT
| SQL_CHAR
| SQL_DATE
| SQL_DECIMAL
| SQL_DOUBLE
| SQL_FLOAT
| SQL_INTEGER
| SQL_LONGVARBINARY
| SQL_LONGVARCHAR
| SQL_REAL
| SQL_SMALLINT
| SQL_TIME
| SQL_TIMESTAMP
| SQL_TINYINT
| SQL_VARBINARY
| SQL_VARCHAR

Description

The ODBC scalar function CONVERT converts an expression to another data type. The
first argument is the expression to be converted. The second argument is the target data
type.

If the expression evaluates to null, the result of the function is null.

The ODBC CONVERT function provides ODBC-compliant syntax for data type
conversion. You must enclose the function with the ODBC escape clause {fn } to use
ODBC-compliant syntax.

4.9.2.19 COS function (ODBC compatible)

Syntax

COS (expression)

Overview

4–54 SQL Language Elements

Description

The scalar function COS returns the cosine of expression.

Example

select cos(45 * pi()/180) 'Cosine of 45 degrees' from syscalctable;
COSINE OF 45 DEG

0.707106781186548
1 record selected

Notes

COS takes an angle (expression) and returns the ratio of two sides of a right triangle. The
ratio is the length of the side adjacent to the angle divided by the length of the
hypotenuse.

• expression specifies an angle in radians

• expression must evaluate to an approximate numeric data type.

To convert degrees to radians, multiply degrees by Pi/180. To convert radians to
degrees, multiply radians by 180/Pi.

4.9.2.20 CURDATE function (ODBC compatible)

Syntax

CURDATE ()

Description

CURDATE returns the current date as a DATE value. This function takes no arguments.

SQL statements can refer to CURDATE anywhere they can refer to a DATE expression.
For example,

INSERT INTO objects (object_owner, object_id, create_date)
 VALUES (USER, 1001, CURDATE()) ;

4.9.2.21 CURTIME function (ODBC compatible)

Syntax

CURTIME ()

Description

CURTIME returns the current time as a TIME value. This function takes no arguments.

SQL statements can refer to CURTIME anywhere they can refer to a TIME expression.
For example,

INSERT INTO objects (object_owner, object_id, create_time)
 VALUES (USER, 1001, CURTIME()) ;

Functions

SQL Language Elements 4–55

4.9.2.22 DATABASE (ODBC compatible)

Syntax

DATABASE [()]

Description

The scalar function DATABASE returns the name of the database corresponding to the
current connection name. This function takes no arguments, and the trailing
parentheses are optional.

Example

select database() from t2;
DATABASE

steel
1 record selected

4.9.2.23 DAYNAME function (ODBC compatible)

Syntax

DAYNAME (date_expression)

Description

Returns a character string containing the name of the day (for example, Sunday, through
Saturday) for the day portion of date_expression. The argument date_expression can be the
name of a column, the result of another scalar function, or a date or timestamp literal.

Example

SELECT *
FROM orders
WHERE order_no = 342 and DAYNAME(order_date)='SATURDAY';

 ORDER_NO ORDER_DATE REFERENCE CUST_NO
 342 08/10/1991 tdfg/101 10001

1 record selected

4.9.2.24 DAYOFMONTH function (ODBC compatible)

Syntax

DAYOFMONTH (date_expression)

Description

The scalar function DAYOFMONTH returns the day of the month in the argument as a
short integer value in the range of 1 - 31.

Example

SELECT *
 FROM orders
 WHERE DAYOFMONTH (order_date) = 14 ;

Overview

4–56 SQL Language Elements

Notes

• The argument to the function must be of type DATE.

• The argument must be specified in the format MM/DD/YYYY.

• The result is of type SHORT.

• If the argument expression evaluates to null, the result is null.

4.9.2.25 DAYOFWEEK function (ODBC compatible)

Syntax

DAYOFWEEK (date_expression)

Description

The scalar function DAYOFWEEK returns the day of the week in the argument as a short
integer value in the range of 1 - 7.

Example

SELECT *
 FROM orders
 WHERE DAYOFWEEK (order_date) = 2 ;

Notes

• The argument to the function must be of type DATE.

• The argument must be specified in the format MM/DD/YYYY.

• The result is of type SHORT.

• If the argument expression evaluates to null, the result is null.

4.9.2.26 DAYOFYEAR function (ODBC compatible)

Syntax

DAYOFYEAR (date_expression)

Description

The scalar function DAYOFYEAR returns the day of the year in the argument as a short
integer value in the range of 1 - 366.

Example

SELECT *
 FROM orders
 WHERE DAYOFYEAR (order_date) = 300 ;

Notes

• The argument to the function must be of type DATE.

• The argument must be specified in the format MM/DD/YYYY.

Functions

SQL Language Elements 4–57

• The result is of type SHORT.

• If the argument expression evaluates to null, the result is null.

4.9.2.27 DB_NAME (extension)

Syntax

DB_NAME ()

Description

The scalar function DB_NAME returns the name of the database corresponding to the
current connection name. It provides compatibility with the Sybase SQL Server function
db_name.

Example

SELECT DB_NAME() FROM T2;
DB_NAME

dharmav4
1 record selected

4.9.2.28 DECODE function (extension)

Syntax

DECODE (expression, search_expression, match_expression
 [, search_expression, match_expression ...]
 [, default_expression])

Description

The DECODE scalar function is a type of conditional expression. (See the topic on
Conditional Expressions for a summary of all the conditional expressions.)

The scalar function DECODE compares the value of the first argument expression with
each search_expression and if a match is found, returns the corresponding
match_expression. If no match is found, then the function returns default_expression. If
default_expression is not specified and no match is found, the function returns a null
value.

DECODE provides a subset of the functionality of CASE that is compatible with Oracle
SQL syntax. Use a simple case expression for SQL-compatible syntax (see CASE (SQL-
92 Compatible)).

Example

SELECT ename, DECODE (deptno,
 10, 'ACCOUNTS ',
 20, 'RESEARCH ',
 30, 'SALES ',
 40, 'SUPPORT ',
 'NOT ASSIGNED'
)
 FROM employee ;

Overview

4–58 SQL Language Elements

Notes

• The first argument expression can be of any type. The types of all search_expressions
must be compatible with the type of the first argument.

• The match_expressions can be of any type. The types of all match_expressions must be
compatible with the type of the first match_expression.

• The type of the default_expression must be compatible with the type of the first
match_expression.

• The type of the result is the same as that of the first match_expression.

• If the first argument expression is null then the value of the default_expression is
returned, if it is specified. Otherwise null is returned.

4.9.2.29 DEGREES function (ODBC compatible)

Syntax

DEGREES (expression)

Description

The scalar function DEGREES returns the number of degrees in an angle specified in
radians by expression.

Example

SELECT DEGREES(3.14159265359) 'Degrees in pi Radians'
 FROM SYSTPE.SYSCALCTABLE;

Notes

• expression specifies an angle in radians

• expression must evaluate to a numeric data type.

4.9.2.30 DIFFERENCE function (ODBC compatible)

Syntax

DIFFERENCE (string_exp1,string_exp2)

Description

The scalar function DIFFERENCE returns an integer value that indicates the difference
between the values returned by the SOUNDEX function for string_exp1 and string_exp2.

Example

SELECT DIFFERENCE(name,'Robets')
FROM customer
WHERE name = 'Roberts';

DIFFEREN

 2
1 record selected

Functions

SQL Language Elements 4–59

Notes

• The arguments of the function can be of the type fixed length or variable length
CHARACTER.

• The result is INTEGER.

• If the argument expression evaluates to null, the result is null.

4.9.2.31 EXP function (ODBC compatible)

Syntax

EXP (expression)

Description

The scalar function EXP returns the exponential value of expression (e raised to the power
of expression).

Example

SELECT EXP(4) 'e to the 4th power'
 FROM SYSTPE.SYSCALCTABLE;

Notes

• expression must evaluate to an approximate numeric data type.

4.9.2.32 FLOOR function (ODBC compatible)

Syntax

FLOOR (expression)

Description

The scalar function FLOOR returns the largest integer less than or equal to expression.

Example

SELECT FLOOR (32.5) 'Floor'
 FROM SYSTPE.SYSCALCTABLE;

Notes

• expression must evaluate to a numeric data type.

4.9.2.33 GREATEST function (extension)

Syntax

GREATEST (expression, expression, ...)

Description

The scalar function GREATEST returns the greatest value among the values of the given
expressions.

Overview

4–60 SQL Language Elements

Example

SELECT cust_no, name,
 GREATEST (ADD_MONTHS (start_date, 10), SYSDATE)
 FROM customer ;

Notes

• The first argument to the function can be of any type. The types of the subsequent
arguments must be compatible with that of the first argument.

• The type of the result is the same as that of the first argument.

• If any of the argument expressions evaluates to null, the result is null.

4.9.2.34 HOUR function (ODBC compatible)

Syntax

HOUR (time_expression)

Description

The scalar function HOUR returns the hour in the argument as a short integer value in
the range of 0 - 23.

Example

SELECT *
 FROM arrivals
 WHERE HOUR (in_time) < 12 ;

Notes

• The argument to the function must be of type TIME.

• The argument must be specified in the format hh:mi:ss.

• The result is of type SHORT.

• If the argument expression evaluates to null, the result is null.

4.9.2.35 IFNULL function (ODBC compatible)

Syntax

IFNULL(expr, value)

Description

The scalar function IFNULL returns value if expr is null. If expr is not null, IFNULL
returns expr.

Example

select c1, ifnull(c1, 9999) from temp order by c1;

Functions

SQL Language Elements 4–61

c1 ifnull(c1,9999)
 9999
 9999
 9999
1 1
3 3

Notes

The data type of value must be compatible with the data type of expr.

4.9.2.36 INITCAP function (extension)

Syntax

INITCAP (char_expression)

Description

The scalar function INITCAP returns the result of the argument character expression
after converting the first character to upper case and the subsequent characters to lower
case.

Example

SELECT INITCAP (name)
 FROM customer ;

Notes

• The argument to the function must be of type CHARACTER.

• The result is of type CHARACTER.

• If the argument expression evaluates to null, the result is null.

4.9.2.37 INSERT function (ODBC compatible)

Syntax

INSERT(string_exp1,start,length,string_exp2)

Description

The scalar function INSERT returns a character string where length characters have
been deleted from string_exp1 beginning at start and string_exp2 has been inserted into
string_exp1, beginning at start.

Example

SELECT INSERT(name,2,4,'xx')
FROM customer
WHERE name = 'Goldman';
INSERT(NAME,2,4,XX)

Gxxan
1 record selected

Overview

4–62 SQL Language Elements

Example

• The string_exp can be of the type fixed length or variable length CHARACTER.

• The start and length can be of the type INTEGER, SMALLINT, TINYINT or BIGINT.

• The result string is of the type string_exp1.

• If any of the argument expression evaluates to a null, the result would be a null.

• If start is negative or zero ,the result string evaluates to a null.

• If length is negative , the result evaluates to a null.

4.9.2.38 INSTR function (extension)

Syntax

INSTR (char_expression, char_expression
 [, start_position [, occurrence]])

Description

The scalar function INSTR searches for the character string corresponding to the second
argument in the character string corresponding to the first argument starting at
start_position. If occurrence is specified, then INSTR searches for the nth occurrence where
n is the value of the fourth argument.

The position (with respect to the start of string corresponding to the first argument) is
returned if a search is successful. Zero is returned if no match can be found.

Example

SELECT cust_no, name
 FROM customer
 WHERE INSTR (LOWER (addr), 'heritage') > 0 ;

Notes

• The first and second arguments must be of type CHARACTER.

• The third and fourth arguments, if specified, must be of type INTEGER.

• The values for specifying position in a character string starts from 1. That is, the
very first character in a string is at position 1, the second character is at position 2
and so on.

• If the third argument is not specified, a default value of 1 is assumed.

• If the fourth argument is not specified, a default value of 1 is assumed.

• The result is of type INTEGER.

• If any of the argument expressions evaluates to null, the result is null.

Functions

SQL Language Elements 4–63

4.9.2.39 LAST_DAY function (extension)

Syntax

LAST_DAY (date_expression)

Description

The scalar function LAST_DAY returns the date corresponding to the last day of the
month containing the argument date.

Example

SELECT *
 FROM orders
 WHERE LAST_DAY (order_date) + 1 = '08/01/1991' ;

Notes

• The argument to the function must be of type DATE.

• The result is of type DATE.

• If the argument expression evaluates to null, the result is null.

4.9.2.40 LCASE function (ODBC compatible)

Syntax

LCASE (char_expression)

Description

The scalar function LCASE returns the result of the argument character expression after
converting all the characters to lower case. LCASE is the same as LOWER but provides
ODBC-compatible syntax.

Example

SELECT *
 FROM customer
 WHERE LCASE (name) = 'smith' ;

Notes

• The argument to the function must be of type CHARACTER.

• The result is of type CHARACTER.

• If the argument expression evaluates to null, the result is null.

4.9.2.41 LEAST function (extension)

Syntax

LEAST (expression, expression, ...)

Overview

4–64 SQL Language Elements

Description

The scalar function LEAST returns the lowest value among the values of the given
expressions.

Example

SELECT cust_no, name,
 LEAST (ADD_MONTHS (start_date, 10), SYSDATE)
 FROM customer ;

Notes

• The first argument to the function can be of any type. The types of the subsequent
arguments must be compatible with that of the first argument.

• The type of the result is the same as that of the first argument.

• If any of the argument expressions evaluates to null, the result is null.

4.9.2.42 LEFT function (ODBC compatible)

Syntax

LEFT (string_exp, count)

Description

The scalar function LEFT returns the leftmost count of characters of string_exp.

Example

SELECT LEFT(name,4)
FROM customer
WHERE name = 'Goldman';

LEFT(NAME,4)

Gold
1 record selected

Notes

• The string_exp can be of the type fixed or variable length CHARACTER.

• The count can be of the type INTEGER, SMALLINT, BIGINT, or TINYINT.

• If any of the arguments of the expression evaluates to a null, the result would be
null.

• If the count is negative, the result evaluates to a null.

4.9.2.43 LENGTH function (ODBC compatible)

Syntax

LENGTH (char_expression)

Functions

SQL Language Elements 4–65

Description

The scalar function LENGTH returns the string length of the value of the given character
expression.

Example

SELECT name 'LONG NAME'
 FROM customer
 WHERE LENGTH (name) > 5 ;

Notes

• The argument to the function must be of type CHARACTER or VARCHAR.

• The result is of type INTEGER.

• If the argument expression evaluates to null, the result is null.

4.9.2.44 LOCATE function (ODBC compatible)

Syntax

LOCATE(char-expr1 , char-expr2, [start-position])

Description

The scalar function LOCATE returns the location of the first occurrence of char-expr1 in
char-expr2. If the function includes the optional integer argument start-position,
LOCATE begins searching char-expr2 at that position. If the function omits the start-
position argument, LOCATE begins its search at the beginning of char-expr2.

LOCATE denotes the first character position of a character expression as 1. If the search
fails, LOCATE returns 0. If either character expression is null, LOCATE returns a null
value.

Example

The following example uses two string literals as character expressions. LOCATE
returns a value of 6:

SELECT LOCATE('this', 'test this test', 1) FROM TEST;
LOCATE(THIS,

 6
1 record selected

4.9.2.45 LOG10 function (ODBC compatible)

Syntax

LOG10 (expression)

Description

The scalar function LOG10 returns the base 10 logarithm of expression.

Overview

4–66 SQL Language Elements

Example

SELECT LOG10 (100) 'Log base 10 of 100'
 FROM SYSTPE.SYSCALCTABLE;

Notes

• expression must evaluate to an approximate numeric data type.

4.9.2.46 LOWER function (SQL-92 compatible)

Syntax

LOWER (char_expression)

Description

The scalar function LOWER returns the result of the argument character expression after
converting all the characters to lower case.

Example

SELECT *
 FROM customer
 WHERE LOWER (name) = 'smith' ;

Notes

• The argument to the function must be of type CHARACTER.

• The result is of type CHARACTER.

• If the argument expression evaluates to null, the result is null.

4.9.2.47 LPAD function (extension)

Syntax

LPAD (char_expression, length [, pad_expression])

Description

The scalar function LPAD pads the character string corresponding to the first argument
on the left with the character string corresponding to the third argument so that after the
padding, the length of the result is length.

Example

SELECT LPAD (name, 30)
 FROM customer ;
SELECT LPAD (name, 30, '.')
 FROM customer ;

Notes

The first argument to the function must be of type CHARACTER.

The second argument to the function must be of type INTEGER.

The third argument, if specified, must be of type CHARACTER.

Functions

SQL Language Elements 4–67

If the third argument is not specified, the default value is a string of length 1 containing
one blank.

If L1 is the length of the first argument and L2 is the value of the second argument, then:

• If L1 is less than L2, the number of characters padded is equal to L2 - L1.

• If L1 is equal to L2, no characters are padded and the result string is the same as the
first argument.

• If L1 is greater than L2, the result string is equal to the first argument truncated to
first L2 characters.

The result is of type CHARACTER.

If the argument expression evaluates to null, the result is null.

4.9.2.48 LTRIM function (ODBC compatible)

Syntax

LTRIM (char_expression [, char_set])

Description

The scalar function LTRIM removes all the leading characters in char_expression, that
are present in char_set and returns the resultant string. Thus, the first character in the
result is guaranteed to be not in char_set. If the char_set argument is omitted, the function
removes the leading and trailing blanks from char_expression.

Example

SELECT name, LTRIM (addr, ' ')
 FROM customer ;

Notes

• The first argument to the function must be of type CHARACTER.

• The second argument to the function must be of type CHARACTER.

• The result is of type CHARACTER.

• If the argument expression evaluates to null, the result is null.

4.9.2.49 MINUTE function (ODBC compatible)

Syntax

MINUTE (time_expression)

Description

The scalar function MINUTE returns the minute value in the argument as a short integer
in the range of 0 - 59.

Overview

4–68 SQL Language Elements

Example

SELECT *
 FROM arrivals
 WHERE MINUTE (in_time) > 10 ;

Notes

• The argument to the function must be of type TIME.

• The argument must be specified in the format HH:MI:SS.

• The result is of type SHORT.

• If the argument expression evaluates to null, the result is null.

4.9.2.50 MOD function (ODBC compatible)

Syntax

MOD (expression1, expression2)

Description

The scalar function MOD returns the remainder of expression1 divided by expression2 .

Example

SELECT MOD (11, 4) 'Modulus'
 FROM SYSTPE.SYSCALCTABLE;

Notes

• Both expression1 and expression2 must evaluate to exact numeric data types.

• If expression2 evaluates to zero, MOD returns zero.

4.9.2.51 MONTHNAME function (ODBC compatible)

Syntax

MONTHNAME (date_expression)

Description

Returns a character string containing the name of the month (for example, January,
through December) for the month portion of date_expression. Argument
date_expression can be name of a column, the result of another scalar function, or a date
or timestamp literal.

Example

SELECT *
FROM orders
WHERE order_no =346 and MONTHNAME(order_date)='JUNE';

 ORDER_NO ORDER_DATE REFERENCE CUST_NO

 346 06/01/1991 87/rd 10002
1 record selected

Functions

SQL Language Elements 4–69

4.9.2.52 MONTH function (ODBC compatible)

Syntax

MONTH (date_expression)

Description

The scalar function MONTH returns the month in the year specified by the argument as
a short integer value in the range of 1 - 12.

Example

SELECT *
 FROM orders
 WHERE MONTH (order_date) = 6 ;

Notes

• The argument to the function must be of type DATE.

• The argument must be specified in the format MM/DD/YYYY.

• The result is of type SHORT.

• If the argument expression evaluates to null, the result is null.

4.9.2.53 MONTHS_BETWEEN function (extension)

Syntax

MONTHS_BETWEEN (date_expression, date_expression)

Description

The scalar function MONTHS_BETWEEN computes the number of months between two
date values corresponding to the first and second arguments.

Example

SELECT MONTHS_BETWEEN (SYSDATE, order_date)
 FROM orders
 WHERE order_no = 1002 ;

Notes

• The first and the second arguments to the function must be of type DATE.

• The result is of type INTEGER.

• The result is negative if the date corresponding to the second argument is greater
than that corresponding to the first argument.

• If any of the arguments expression evaluates to null, the result is null.

4.9.2.54 NEXT_DAY function (extension)

Syntax

NEXT_DAY (date_expression, day_of_week)

Overview

4–70 SQL Language Elements

Description

The scalar function NEXT_DAY returns the minimum date that is greater than the date
corresponding to the first argument for which the day of the week is same as that
specified by the second argument.

Example

SELECT NEXT_DAY (order_date, 'MONDAY')
 FROM orders ;

Notes

• The first argument to the function must be of type DATE.

• The second argument to the function must be of type CHARACTER. The result of
the second argument must be a valid day of week ('SUNDAY', 'MONDAY' etc.)

• The result is of type DATE.

• If any of the argument expressions evaluates to null, the result is null.

4.9.2.55 NOW function (ODBC compatible)

Syntax

NOW ()

Description

NOW returns the current date and time as a TIMESTAMP value. This function takes no
arguments.

4.9.2.56 NULLIF (SQL-92 compatible)

Syntax

NULLIF (expression1, expression2)

Description

The NULLIF scalar function is a type of conditional expression. (See the topic on
Conditional Expressions for a summary of all the conditional expressions.)

The NULLIF scalar function returns a null value for expression1 if it is equal to
expression2 . It's useful for converting values to null from applications that use some
other representation for missing or unknown data.

Notes

• This function is not allowed in a GROUP BY clause.

• Arguments to this function cannot be query expressions.

• The NULLIF expression is shorthand notation for a common case that can also be
represented in a CASE expression, as follows:

Functions

SQL Language Elements 4–71

CASE
WHEN expression1 = expression2 THEN NULL
ELSE expression1

Example

This example uses the NULLIF scalar function to insert a null value into an address
column if the host-language variable contains a single space character.

INSERT INTO employee (add1) VALUES (NULLIF (:address1, ' '));

4.9.2.57 NVL function (extension)

Syntax

NVL (expression, expression)

Description

The scalar function NVL returns the value of the first expression if the first expression
value is not null. If the first expression value is null, the value of the second expression
is returned.

The NVL function is not ODBC compatible. Use the IFNULL function for ODBC-
compatible syntax.

Example

SELECT salary + NVL (comm, 0) 'TOTAL SALARY'
 FROM employee ;

Notes

• The first argument to the function can be of any type.

• The type of the second argument must be compatible with that of the first argument.

• The type of the result is the same as the first argument.

4.9.2.58 OBJECT_ID function (extension)

Syntax

OBJECT_ID ('table_name')

Description

The scalar function OBJECT_ID returns the value of the id column in the
systpe.systables, plus one. This function provides compatibility with the Sybase SQL
Server function object_id.

Arguments

table_name
The name of the table for which OBJECT_ID returns an identification value.

Overview

4–72 SQL Language Elements

Example

select id, object_id(tbl), tbl from systpe.systables
 1 where owner = 'systpe';
 ID OBJECT_ID(TB TBL
 -- ------------ ---
 0 1 systblspaces
 1 2 systables
 2 3 syscolumns
 3 4 sysindexes
 4 5 systsfiles
 5 6 syslogfiles
 6 7 sysdbbackup
 7 8 syslogbackup
 8 9 sysdbsyncpt
 9 10 sysdbsuuid
 10 11 syssyssvr
 11 12 sysusrsvr
.
.
.

4.9.2.59 PI function (ODBC compatible)

Syntax

PI ()

Description

The scalar function PI returns the constant value of pi as a floating point value.

Example

SELECT PI ()
 FROM SYSTPE.SYSCALCTABLE;

4.9.2.60 POWER function (ODBC compatible)

Syntax

POWER (expression1 , expression2)

Description

The scalar function POWER returns expression1 raised to the power of expression2 .

Example

SELECT POWER (3 , 2) '3 raised to the 2nd power'
 FROM SYSTPE.SYSCALCTABLE;

Notes

• expression1 must evaluate to a numeric data type.

• expression2 must evaluate to an exact numeric data type.

Functions

SQL Language Elements 4–73

4.9.2.61 PREFIX function (extension)

Syntax

PREFIX(char_expression, start_position, char_expression)

Description

The scalar function PREFIX returns the substring of a character string starting from the
position specified by start position, and ending before the specified character.

Arguments

char_expression
An expression that evaluates to a character string, typically a character-string literal or
column name. If the expression evaluates to null, PREFIX returns null.

start_position
An expression that evaluates to an integer value. PREFIX searches the string specified
in the first argument starting at that position. A value of 1 indicates the first character of
the string.

char_expression
An expression that evaluates to a single character. PREFIX returns the substring that
ends before that character. If PREFIX does not find the character, it returns the substring
beginning with start_position, to the end of the string. If the expression evaluates to
more than one character, PREFIX ignores all but the first character.

Example

SELECT C1, C2, PREFIX(C1, 1, '.') FROM T1;
C1 C2 PREFIX(C1,1,.
-- -- -------------
test.pref . test
pref.test s pref
2 records selected

SELECT C1, C2, PREFIX(C1, 1, C2) FROM T1;
C1 C2 PREFIX(C1,1,C
-- -- -------------
test.pref . test
pref.test s pref.te
2 records selected

SELECT C1, C2, PREFIX(C1, 1, 'Q') FROM T1;
C1 C2 PREFIX(C1,1,Q
-- -- -------------
test.pref . test.pref
pref.test s pref.test
2 records selected

4.9.2.62 QUARTER function (ODBC compatible)

Syntax

QUARTER (time_expression)

Overview

4–74 SQL Language Elements

Description

The scalar function QUARTER returns the quarter in the year specified by the argument
as a short integer value in the range of 1 - 4.

Example

SELECT *
 FROM orders
 WHERE QUARTER (order_date) = 3 ;

Notes

• The argument to the function must be of type DATE.

• The argument must be specified in the format MM/DD/YYYY.

• The result is of type SHORT.

• If the argument expression evaluates to null, the result is null.

4.9.2.63 RADIANS function (ODBC compatible)

Syntax

RADIANS (expression)

Description

The scalar function RADIANS returns the number of radians in an angle specified in
degrees by expression.

Example

SELECT RADIANS(180) 'Radians in 180 degrees'
 FROM SYSTPE.SYSCALCTABLE;

Notes

• expression specifies an angle in degrees

• expression must evaluate to a numeric data type.

4.9.2.64 RAND function (ODBC compatible)

Syntax

RAND ([expression])

Description

The scalar function RAND returns a randomly-generated number, using expression as an
optional seed value.

Example

SELECT RAND(3) 'Random number using 3 as seed value'
 FROM SYSTPE.SYSCALCTABLE;

Functions

SQL Language Elements 4–75

Notes

• expression must evaluate to an exact numeric data type.

4.9.2.65 REPLACE function (ODBC compatible)

Syntax

REPLACE (string_exp1,string_exp2,string_exp3)

Description

The scalar function REPLACE replaces all occurrences of string_exp2 in string_exp1 with
string_exp3.

Example

SELECT REPLACE (name,'mi','moo')
FROM customer
WHERE name = 'Smith';

REPLACE(NAME,MI,MOO)

Smooth
1 record selected

Notes

• string_exp can be of the type fixed or variable length CHARACTER.

• If any of the arguments of the expression evaluates to null, the result is null.

• If the replacement string is not found in the search string, it returns the original
string.

4.9.2.66 RIGHT function (ODBC compatible)

Syntax

RIGHT (string_exp, count)

Description

The scalar function RIGHT returns the rightmost count of characters of string_exp.

Example

SELECT RIGHT(fld1,6)
FROM test100
WHERE fld1 = 'Afghanistan';
RIGHT(FLD1,6)

nistan
1 record selected

Notes

• The string_exp can be of the type fixed or variable length CHARACTER.

• The count can be of the type INTEGER, SMALLINT, BIGINT, or TINYINT.

Overview

4–76 SQL Language Elements

• If any of the arguments of the expression evaluates to a null, the result would be
null.

• If the count is negative, the result evaluates to a null.

4.9.2.67 REPEAT function (ODBC compatible)

Syntax

REPEAT (string_exp,count)

Description

The scalar function REPEAT returns a character string composed of string_exp repeated
count times.

Example

SELECT REPEAT(fld1,3)
FROM test100
WHERE fld1 = 'Afghanistan'

Results

REPEAT(FLD1,3)

AfghanistanAfghanistanAfghanistan

1 record selected

Notes

• The string exp. can be of the type fixed length or variable length CHARACTER .

• The count can be of the type INTEGER, SMALLINT, BIGINT, or TINYINT.

• If any of the arguments of the expression evaluates to a null, the result would be
null.

• If the count is negative or zero ,the result evaluates to a null.

4.9.2.68 ROWID (extension)

Syntax

ROWID

Description

ROWID returns the row identifier of the current row in a table. This function takes no
arguments. The ROWID of a row is determined when the row is inserted into the table.
Once assigned, the ROWID remains the same for the row until the row is deleted. At any
given time, each row in a table is uniquely identified by its ROWID.

The format of the row identifier returned by this function varies between storage
managers.

Selecting a row in a table using its ROWID is the most efficient way of selecting the row.
For example,

Functions

SQL Language Elements 4–77

 SELECT *
 FROM customers
 WHERE ROWID = '10';

4.9.2.69 ROWIDTOCHAR (extension)

Syntax

ROWIDTOCHAR (expression)

Description

The scalar function ROWIDTOCHAR returns the character form of a ROWID contained
in the input argument. The representation of a row identifier depends on the storage
manager. The format of the argument to this function is defined by the storage manager.
See the documentation for your storage manager for details.

Example

The following example uses ROWIDTOCHAR to convert a row identifier from its
internal representation to a character string. This example is specific to the Dharma
storage manager's representation of a row identifier:

SELECT cust_no,
 SUBSTR (ROWIDTOCHAR (ROWID), 1, 8) 'PAGE NUMBER',
 SUBSTR (ROWIDTOCHAR (ROWID), 10, 4) 'LINE NUMBER',
 SUBSTR (ROWIDTOCHAR (ROWID), 15, 4) 'TABLE SPACE NUMBER'
 FROM customer ;

Notes

• The argument to the function must be a ROWID, as defined by the storage manager.

• The result is of CHARACTER type.

• If the argument expression evaluates to null, the result is null.

4.9.2.70 RPAD function (extension)

Syntax

RPAD (char_expression, length [, pad_expression])

Description

The scalar function RPAD pads the character string corresponding to the first argument
on the right with the character string corresponding to the third argument so that after
the padding, the length of the result would be equal to the value of the second argument
length.

Example

SELECT RPAD (name, 30)
 FROM customer ;

 SELECT RPAD (name, 30, '.')
 FROM customer ;

Overview

4–78 SQL Language Elements

Notes

The first argument to the function must be of type CHARACTER.

The second argument to the function must be of type INTEGER.

The third argument, if specified, must be of type CHARACTER.

If the third argument is not specified, the default value is a string of length 1 containing
one blank.

If L1 is the length of the first argument and L2 is the value of the second argument, then:

• If L1 is less than L2, the number of characters padded is equal to L2 - L1.

• If L1 is equal to L2, no characters are padded and the result string is the same as the
first argument.

• If L1 is greater than L2, the result string is equal to the first argument truncated to
first L2 characters.

The result is of type CHARACTER.

If the argument expression evaluates to null, the result is null.

4.9.2.71 RTRIM function (ODBC compatible)

Syntax

RTRIM (char_expression [, char_set])

Description

The scalar function RTRIM removes all the trailing characters in char_expression, that
are present in char_set and returns the resultant string. Thus, the last character in the
result is guaranteed to be not in char_set. If the char_set argument is omitted, the function
removes the leading and trailing blanks from char_expression.

Example

SELECT RPAD (RTRIM (addr, ' '), 30, '.')
 FROM customer ;

Notes

• The first argument to the function must be of type CHARACTER.

• The second argument to the function must be of type CHARACTER.

• The result is of type CHARACTER.

• If the argument expression evaluates to null, the result is null.

4.9.2.72 SECOND function (ODBC compatible)

Syntax

SECOND (time_expression)

Functions

SQL Language Elements 4–79

Description

The scalar function SECOND returns the seconds in the argument as a short integer
value in the range of 0 - 59.

Example

SELECT *
 FROM arrivals
 WHERE SECOND (in_time) <= 40 ;

Notes

• The argument to the function must be of type TIME.

• The argument must be specified in the format HH:MI:SS.

• The result is of type SHORT.

• If the argument expression evaluates to null, the result is null.

4.9.2.73 SIGN function (ODBC compatible)

Syntax

SIGN (expression)

Description

The scalar function SIGN returns 1 if expression is positive, -1 if expression is negative, or
zero if it is zero.

Example

SELECT SIGN(-14) 'Sign'
 FROM SYSTPE.SYSCALCTABLE;

Notes

• expression must evaluate to a numeric data type.

4.9.2.74 SIN function (ODBC compatible)

Syntax

SIN (expression)

Description

The scalar function SIN returns the sine of expression.

Example

select sin(45 * pi()/180) 'Sine of 45 degrees' from syscalctable;
SINE OF 45 DEGRE

0.707106781186547
1 record selected

Overview

4–80 SQL Language Elements

Notes

SIN takes an angle (expression) and returns the ratio of two sides of a right triangle. The
ratio is the length of the side opposite the angle divided by the length of the hypotenuse.

• expression specifies an angle in radians

• expression must evaluate to an approximate numeric data type.

To convert degrees to radians, multiply degrees by Pi/180. To convert radians to
degrees, multiply radians by 180/Pi.

4.9.2.75 SOUNDEX function (ODBC compatible)

Syntax

SOUNDEX (string_exp)

Description

The scalar function SOUNDEX returns a four-character soundex code for character
strings that are composed of a contiguous sequence of valid single- or double-byte
roman letters.

Example

SELECT SOUNDEX('Roberts')
FROM syscalctable;

4.9.2.76 SPACE function (ODBC compatible)

Syntax

SPACE (count)

Description

The scalar function SPACE returns a character string consisting of count spaces.

Example

SELECT CONCAT(SPACE(3), name)
FROM customer
WHERE name = 'Roberts';

CONCAT (,NAME)

 Roberts
1 record selected

Notes

• The count argument can be of type INTEGER, SMALLINT, BIGINT, or TINYINT.

• If count is null, the result is null.

• If count is negative, the result is null.

Functions

SQL Language Elements 4–81

4.9.2.77 SQRT function (ODBC compatible)

Syntax

SQRT (expression)

Description

The scalar function SQRT returns the square root of expression.

Example

SELECT SQRT(28) 'square root of 28'
 FROM SYSTPE.SYSCALCTABLE;

Notes

• The value of expression must be positive.

• expression must evaluate to an approximate numeric data type.

4.9.2.78 SUBSTR function (extension)

Syntax

SUBSTR (char_expression, start_position [, length])

Description

The scalar function SUBSTR returns the substring of the character string corresponding
to the first argument starting at start_position and length characters long. If the third
argument length is not specified, substring starting at start_position up to the end of
char_expression is returned.

Example

SELECT name, '(', SUBSTR (phone, 1, 3) , ')',
 SUBSTR (phone, 4, 3), '-',
 SUBSTR (phone, 7, 4)
 FROM customer ;

Notes

• The first argument must be of type CHARACTER.

• The second argument must be of type INTEGER.

• The third argument, if specified, must be of type INTEGER.

• The values for specifying position in the character string start from 1: The very first
character in a string is at position 1, the second character is at position 2 and so on.

• The result is of type CHARACTER.

• If any of the argument expressions evaluates to null, the result is null.

Overview

4–82 SQL Language Elements

4.9.2.79 SUBSTRING function (ODBC compatible)

Syntax

SUBSTRING (char_expression, start_position [, length])

Description

The scalar function SUBSTRING returns the substring of the character string
corresponding to the first argument starting at start_position and length characters long.
If the third argument length is not specified, the substring starting at start_position up to
the end of char_expression is returned. SUBSTRING is identical to SUBSTR but provides
ODBC-compatible syntax.

Example

SELECT name, '(', SUBSTRING (phone, 1, 3) , ')',
 SUBSTRING (phone, 4, 3), '-',
 SUBSTRING (phone, 7, 4)
 FROM customer ;

Notes

• The first argument must be of type CHARACTER.

• The second argument must be of type INTEGER.

• The third argument, if specified, must be of type INTEGER.

• The values for specifying position in the character string start from 1: The very first
character in a string is at position 1, the second character is at position 2 and so on.

• The result is of type CHARACTER.

• If any of the argument expressions evaluates to null, the result is null.

4.9.2.80 SUFFIX function (extension)

Syntax

SUFFIX(char_expression, start_position, char_expression)

Description

The scalar function SUFFIX returns the substring of a character string starting after the
position specified by start_position and the second char_expression, to the end of the
string.

Arguments

char_expression
An expression that evaluates to a character string, typically a character-string literal or
column name. If the expression evaluates to null, SUFFIX returns null.

start_position
An expression that evaluates to an integer value. SUFFIX searches the string specified in
the first argument starting at that position. A value of 1 indicates the first character of
the string.

Functions

SQL Language Elements 4–83

char_expression
An expression that evaluates to a single character. SUFFIX returns the substring that
begins with that character. If SUFFIX does not find the character after start_position, it
returns null. If the expression evaluates to more than one character, SUFFIX ignores all
but the first character.

Example

SELECT C1, C2, SUFFIX(C1, 6, '.') FROM T1;
C1 C2 SUFFIX(C1,6,.
-- -- -------------
test.pref .
pref.test s
2 records selected

SELECT C1, C2, SUFFIX(C1, 1, C2) FROM T1;
C1 C2 SUFFIX(C1,1,C
-- -- -------------
test.pref . pref
pref.test s t
2 records selected

SELECT C1, C2, SUFFIX(C1, 6, '.') FROM T1;
C1 C2 SUFFIX(C1,6,.
-- -- -------------
test.pref .
pref.test s
2 records selected

4.9.2.81 SUSER_NAME function (extension)

Syntax

SUSER_NAME ([user_id])

Description

The scalar function SUSER_NAME returns the user login name for the user_id specified
in the input argument. If no user_id is specified, SUSER_NAME returns the name of the
current user .

This function provides compatibility with the Sybase SQL Server function suser_name.
It is identical to the USER_NAME function.

Overview

4–84 SQL Language Elements

Example

 select suser_name() from systpe.syscalctable;
SUSER_NAME

searle
1 record selected
 select suser_name(104) from systpe.syscalctable;
SUSER_NAME(104)

dbp
1 record selected
 select id, tbl, owner from systpe.systables
 1 where owner = suser_name();
 ID TBL OWNER
 -- --- -----
 41 test searle
 42 t2 searle
 43 t1 searle

3 records selected

4.9.2.82 SYSDATE function (extension)

Syntax

SYSDATE [()]

Description

SYSDATE returns the current date as a DATE value. This function takes no arguments,
and the trailing parentheses are optional.

SQL statements can refer to SYSDATE anywhere they can refer to a DATE expression.
For example,

INSERT INTO objects (object_owner, object_id, create_date)
 VALUES (USER, 1001, SYSDATE) ;

4.9.2.83 SYSTIME function (extension)

Syntax

SYSTIME [()]

Description

SYSTIME returns the current time as a TIME value. This function takes no arguments,
and the trailing parentheses are optional.

SQL statements can refer to SYSTIME anywhere they can refer to a TIME expression. For
example,

INSERT INTO objects (object_owner, object_id, create_time)
 VALUES (USER, 1001, SYSTIME) ;

Functions

SQL Language Elements 4–85

4.9.2.84 SYSTIMESTAMP function (extension)

Syntax

SYSTIMESTAMP [()]

Description

SYSTIMESTAMP returns the current date and time as a TIMESTAMP value. This
function takes no arguments, and the trailing parentheses are optional.

The following SQL example shows the different formats for SYSDATE, SYSTIME, and
SYSTIMESTAMP:

SELECT SYSDATE FROM test;
SYSDATE

09/13/1994
1 record selected
SELECT SYSTIME FROM test;
SYSTIME

14:44:07:000
1 record selected
SELECT SYSTIMESTAMP FROM test;
SYSTIMESTAMP

1994-09-13 14:44:15:000
1 record selected

4.9.2.85 TAN function (ODBC compatible)

Syntax

TAN (expression)

Description

The scalar function TAN returns the tangent of expression.

Example

select tan(45 * pi()/180) 'Tangent of 45 degrees' from syscalctable;
TANGENT OF 45 DE

1.000000000000000
1 record selected

Notes

TAN takes an angle (expression) and returns the ratio of two sides of a right triangle. The
ratio is the length of the side opposite the angle divided by the length of the side adjacent
to the angle.

• expression specifies an angle in radians

• expression must evaluate to an approximate numeric data type.

To convert degrees to radians, multiply degrees by Pi/180. To convert radians to
degrees, multiply radians by 180/Pi.

Overview

4–86 SQL Language Elements

4.9.2.86 TIMESTAMPADD function (ODBC compatible)

Syntax

TIMESTAMPADD(interval, integer_exp, date_time_exp)

interval::
 SQL_TSI_FRAC_SECOND
 | SQL_TSI_SECOND
 | SQL_TSI_MINUTE
 | SQL_TSI_HOUR
 | SQL_TSI_DAY
 | SQL_TSI_WEEK
 | SQL_TSI_MONTH
 | SQL_TSI_QUARTER
 | SQL_TSI_YEAR

Description

Returns the timestamp calculated by adding integer_exp intervals of type interval to
timestamp_exp.

Arguments

interval
Keywords that specify the interval to add to timestamp_exp. The
SQL_TSI_FRAC_SECOND keyword specifies fractional seconds as billionths of a
second.

integer_exp
The number of interval values to add to timestamp_exp. integer_exp can be any expression
that evaluates to an integer data type.

date_time_exp
A date-time expression from which TIMESTAMPADD calculates the return value. If
date_time_exp is a date value and interval specifies fractional seconds, seconds, minutes,
or hours, the time portion of timestamp_exp is set to 0 before calculating the resulting
timestamp.

Example

The following example displays the current system time and uses the TIMESTAMPADD
scalar function to add 8 hours to it.

> select systime, timestampadd(sql_tsi_hour, 8, systime) from
syscalctable;
15:03:57:000 06/08/1999 23:03:57:000
------------ -----------------------
15:03:57:000, 1999-06-08 23:03:57:000

4.9.2.87 TIMESTAMPDIFF function (ODBC compatible)

Syntax

TIMESTAMPDIFF(interval, date_time_exp1, date_time_exp2)

Functions

SQL Language Elements 4–87

interval::
 SQL_TSI_FRAC_SECOND
 | SQL_TSI_SECOND
 | SQL_TSI_MINUTE
 | SQL_TSI_HOUR
 | SQL_TSI_DAY
 | SQL_TSI_WEEK
 | SQL_TSI_MONTH
 | SQL_TSI_QUARTER
 | SQL_TSI_YEAR

Description

Returns an integer representing the number of intervals by which date_time_exp2 is
greater than date_time_exp1.

Arguments

interval
Keywords that specify the interval in which to express the difference between the two
date-time arguments. The SQL_TSI_FRAC_SECOND keyword specifies fractional
seconds as billionths of a second.

date_time_exp1
A date-time expression which TIMESTAMPADD subtracts from date_time_exp2.

date_time_exp1
A date-time expression from which TIMESTAMPADD subtracts date_time_exp1.

Example

The following example displays difference in seconds between the current system time
and one day later.

> select timestampdiff(sql_tsi_second, sysdate, sysdate + 1) from
syscalctable;
86400

86400

Notes

If either date-time expression is a time value and interval specifies days, weeks, months,
quarters, or years, the date portion of that expression is set to the current date before
calculating the difference between the expressions.

If either date-time expression is a date value and interval specifies fractional seconds,
seconds, minutes, or hours, the time portion of that expression is set to 0 before
calculating the difference between the expressions.

4.9.2.88 TO_CHAR function (extension)

Syntax

TO_CHAR (expression [, format_string])

Overview

4–88 SQL Language Elements

Description

The scalar function TO_CHAR converts the given expression to character form and
returns the result. The primary use for TO_CHAR is to format the output of date-time
expressions through the format_string argument.

Arguments

expression
Specifies the expression to be converted to character form. To use the format_string
argument, expression must evaluate to a date or time value.

format_string
A date-time format string that specifies the format of the output. See “Date Format
Strings” and “Time Format Strings” for details on format strings.

SQL ignores the format string if the expression argument does not evaluate to a date or
time.

Example

SELECT C1 FROM T2;
C1
--
09/29/1952
1 record selected
SELECT TO_CHAR(C1, 'Day, Month ddth'),
 TO_CHAR(C2, 'HH12 a.m.') FROM T2;
TO_CHAR(C1,DAY, MONTH DDTH) TO_CHAR(C2,HH12 A.M.)
--------------------------- ---------------------
Monday , September 29th 02 p.m.
1 record selected

Notes

• The first argument to the function can be of any type.

• The second argument, if specified, must be of type CHARACTER.

• The result is of type CHARACTER.

• The format argument can be used only when the type of the first argument is DATE.

• If any of the argument expressions evaluates to null, the result is null.

4.9.2.89 TO_DATE function (extension)

Syntax

 TO_DATE (date_lit)

Description

The scalar function TO_DATE converts the given date literal to a date value.

Example

SELECT *
 FROM orders
 WHERE order_date <= TO_DATE ('12/31/1991') ;

Functions

SQL Language Elements 4–89

Notes

• The result is of type DATE.

• Supply the date literal in any valid format. See "Date Literals" for valid formats.

4.9.2.90 TO_NUMBER function (extension)

Syntax

TO_NUMBER (char_expression)

Description

The scalar function TO_NUMBER converts the given character expression to a number
value.

Example

SELECT *
 FROM customer
 WHERE TO_NUMBER (SUBSTR (phone, 1, 3)) = 603 ;

Notes

• The argument to the function must be of type CHARACTER.

• The result is of type NUMERIC.

• If any of the argument expressions evaluates to null, the result is null.

4.9.2.91 TO_TIME function (extension)

Syntax

TO_TIME (time_lit)

Description

The scalar function TO_TIME converts the given time literal to a time value.

Example

SELECT *
 FROM orders
 WHERE order_date < TO_DATE ('05/15/1991')
 AND order_time < TO_TIME ('12:00:00') ;

Notes

• The result is of type TIME.

• Supply the time literal in any valid format. See "Time Literals" for valid formats.

4.9.2.92 TO_TIMESTAMP function (extension)

Syntax

TO_TIMESTAMP (timestamp_lit)

Overview

4–90 SQL Language Elements

Description

The scalar function TO_TIMESTAMP converts the given timestamp literal to a
timestamp value.

Example

SELECT * FROM DTEST
WHERE C3 = TO_TIMESTAMP('4/18/95 10:41:19')

Notes

• The result is of type TIME.

• Supply the timestamp literal in any valid format. See "Timestamp Literals" for valid
formats.

4.9.2.94 TRANSLATE function (extension)

Syntax

TRANSLATE (char_expression, from_set, to_set)

Description

The scalar function TRANSLATE translates each character in char_expression that is in
from_set to the corresponding character in to_set. The translated character string is
returned as the result. This function is similar to the Oracle TRANSLATE function.

Example

This example substitutes underscores for spaces in customer names.

SELECT TRANSLATE (customer_name, ' ', '_')
 "TRANSLATE Example" from customers;
TRANSLATE EXAMPLE

Sports_Cars_Inc.__________________________________
Mighty_Bulldozer_Inc._____________________________
Ship_Shapers_Inc._________________________________
Tower_Construction_Inc.___________________________
Chemical_Construction_Inc.________________________
Aerospace_Enterprises_Inc.________________________
Medical_Enterprises_Inc.__________________________
Rail_Builders_Inc.________________________________
Luxury_Cars_Inc.__________________________________
Office_Furniture_Inc._____________________________
10 records selected

Notes

• char_expression, from_set, and to_set can be any character expression.

• For each character in char_expression, TRANSLATE checks for the same character in
from_set:

• If it is in from_set, TRANSLATE translates it to the corresponding character in
to_set (if the character is the nth character in from_set, the nth character in to_set).

• If the character is not in from_set TRANSLATE does not change it.

Functions

SQL Language Elements 4–91

• If from_set is longer than to_set, TRANSLATE does not change trailing
characters in from_set that do not have a corresponding character in to_set.

• If either from_set or to_set is null, TRANSLATE does nothing.

4.9.2.95 UCASE function (ODBC compatible)

Syntax

UCASE (char_expression)

Description

The scalar function UCASE returns the result of the argument character expression after
converting all the characters to upper case. UCASE is identical to UPPER, but provides
ODBC-compatible syntax.

Example

SELECT *
 FROM customer
 WHERE UCASE (name) = 'SMITH' ;

Notes

• The argument to the function must be of type CHARACTER.

• The result is of type CHARACTER.

• If the argument expression evaluates to null, the result is null.

4.9.2.96 UID function (extension)

UID returns an integer identifier for the user of the current transaction, as determined by
the host operating system.

The value contained in this register is of INTEGER type. The host representation is of
long integer type. SQL statements can refer to UID anywhere they can refer to an integer
expression. For example,

INSERT INTO objects (owner_id, object_id)
 VALUES (UID, 1001) ;

SELECT *
 FROM objects
 WHERE owner_id = UID ;

4.9.2.97 UPPER function (SQL-92 compatible)

Syntax

UPPER (char_expression)

Description

The scalar function UPPER returns the result of the argument character expression after
converting all the characters to upper case.

Overview

4–92 SQL Language Elements

Example

SELECT *
 FROM customer
 WHERE UPPER (name) = 'SMITH' ;

Notes

• The argument to the function must be of type CHARACTER.

• The result is of type CHARACTER.

• If the argument expression evaluates to null, the result is null.

4.9.2.98 USER function (ODBC compatible)

Syntax

USER [()]

Description

USER returns a character-string identifier for the database user, as specified in the
current connection. If the current connection did not specify a user, USER returns the
login name as determined by the host operating system. This function takes no
arguments, and the trailing parentheses are optional.

SQL statements can refer to USER anywhere they can refer to a character string
expression.

Example

The following interactive SQL example shows connecting to a database as the user fred.
Queries on two system tables illustrate the USER scalar function and retrieve the names
of any tables owned by the user fred:

% isql -u fred tstdb

 Dharma/isql Version 6.2.1
 Dharma Systems Inc (C) 1988-99.
 Dharma Computers Pvt Ltd (C) 1988-99.

ISQL> select user from systpe.syscalctable;
FRED

fred
1 record selected
ISQL> select tbl, owner from systpe.systables where owner = user();
TBL OWNER
--- -----
flab fred
1 record selected

4.9.2.99 USER_NAME function (extension)

Syntax

USER_NAME ([user_id])

Functions

SQL Language Elements 4–93

Description

The scalar function USER_NAME returns the user login name for the user_id specified
in the input argument. If no user_id is specified, USER_NAME returns the name of the
current user.

The scalar function USER_NAME is identical to SUSER_NAME.

4.9.2.100 WEEK function (ODBC compatible)

Syntax

WEEK (time_expression)

Description

The scalar function WEEK returns the week of the year as a short integer value in the
range of 1 - 53.

Example

SELECT *
 FROM orders
 WHERE WEEK (order_date) = 5 ;

Notes

• The argument to the function must be of type DATE.

• The argument must be specified in the format MM/DD/YYYY.

• The result is of type SHORT.

• If the argument expression evaluates to null, the result is null.

4.9.2.101 YEAR function (ODBC compatible)

Syntax

YEAR (date_expression)

Description

The scalar function YEAR returns the year as a short integer value in the range of 0 -
9999.

Example

SELECT *
 FROM orders
 WHERE YEAR (order_date) = 1992 ;

Notes

• The argument to the function must be of type DATE.

• The argument must be specified in the format MM/DD/YYYY.

• The result is of type SHORT.

Overview

4–94 SQL Language Elements

• If the argument expression evaluates to null, the result is null.

SQL Statements 5–1

5
SQL Statements

This chapter provides detailed reference material on each SQL statement.

Syntax Conventions

Syntax diagrams appear in helvetica type and use the following conventions:

UPPERCASE Uppercase type denotes reserved words. You must
include reserved words in statements, but they can be
upper or lower case.

lowercase Lowercase type denotes either user-supplied elements
or names of other syntax diagrams. User-supplied
elements include names of tables, host-language
variables, expressions, and literals. Syntax diagrams
can refer to each other by name. If a diagram is named,
the name appears in lowercase type above and to the
left of the diagram, followed by a double-colon (for
example, privilege ::). The name of that diagram
appears in lowercase in diagrams that refer to it.

{ } Braces denote a choice among mandatory elements.
They enclose a set of options, separated by vertical bars
(|). You must choose at least one of the options.

[] Brackets denote an optional element or a choice among
optional elements.

| Vertical bars separate a set of options.

... A horizontal ellipsis denotes that the preceding
element can optionally be repeated any number of
times.

() , ; Parentheses and other punctuation marks are required
elements. Enter them as shown in syntax diagrams.

Overview

5–2 SQL Statements

5.1 CALL

Description

Invokes a stored procedure.

Syntax

[? =] CALL proc_name([parameter][,...]);

Arguments

[? =]
A parameter marker for the return value of the procedure. Programs must determine if
the procedure returns a value and use the parameter marker as a placeholder for a
variable that will receive the return value.

CALL proc_name
The name of the procedure to invoke.

parameter
Literal or variable values to pass to the procedure.

Example

The following examples shows invocation of the SQLPROC built-in procedure from
interactive SQL. It invokes SQLPROC to retrieve information about another built-in
procedure, SQLTABLES:

CALL SQLPROC('',0,'systpe',6,'sqltables',9); -- specific procedure
PROCEDURE_QUALIFIER PROCEDURE_OWNER PROCEDURE_NAME NUM_INPU NUM_OUTP NUM_RESU REMARKS PROCEDUR
------------------- --------------- -------------- -------- -------- -------- ------- --------
 systpe sqltables 6 0 1 Returns info about a table 1

1 record returned

Authorization

• Users must have the DBA or EXECUTE privilege to invoke a stored procedure.

• Users invoking a stored procedure do not need privileges to database objects
accessed by the procedure. When a user executes a stored procedure, SQL checks
the privileges of the procedure owner, not the procedure user, on any objects that the
procedure accesses. This enables a user to execute a procedure successfully even
when that user does not have the privileges to directly access objects used by the
procedure.

SQL Compliance ODBC Extended SQL grammar, when enclosed in ODBC escape clause

Environment Embedded SQL, interactive SQL, ODBC applications

Related Statements CREATE PROCEDURE, DROP PROCEDURE

CREATE INDEX

SQL Statements 5–3

5.2 CREATE INDEX

Description

Creates an index on the specified table using the specified columns of the table. An
index improves the performance of SQL operations whose predicates are based on the
indexed column. However, an index slows performance of INSERT, DELETE and
UPDATE operations.

Syntax

CREATE [UNIQUE] INDEX index_name
 ON table_name
 ({column_name [ASC | DESC]} [, ...])
 [PCTFREE number]
 [STORAGE_ATTRIBUTES ‘attributes’]
 [TYPE ‘ix_type’];

Arguments

UNIQUE
A UNIQUE index will not allow the table to contain any rows with duplicate column
values for the set of columns specified for that index.

index_name
The name of the index has to be unique within the local database.

table_name
The name of the table on which the index is being built.

column_name [, ...]
The columns on which searches and retrievals will be ordered. These columns are
called the index key. When more than one column is specified in the CREATE INDEX
statement a concatenated index is created.

ASC | DESC
The index can be ordered as either ascending (ASC) or descending (DESC) on each
column of the concatenated index. The default is ASC.

PCTFREE number
Specifies the desired percentage of free space for a index. The PCTFREE clause indicates
to the storage system how much of the space allocated to an index should be left free to
accommodate growth. However, the actual behavior of the PCTFREE clause depends
entirely on the underlying storage system. The SQL engine passes the PCTFREE value to
the storage system, which may ignore it or interpret it. If the CREATE statement does not
include a PCTFREE clause, the default is 20. See the documentation for your storage
system for details.

STORAGE_ATTRIBUTES 'attributes'
A quoted string that specifies index attributes that are specific to a particular storage
system. The SQL engine passes this string to the storage system, and its effects are
defined by the storage manager. See the documentation for your storage system for
details.

Overview

5–4 SQL Statements

TYPE 'ix_type'
A single-character that specifies the type of index. The valid values for the TYPE
argument and their meanings are specific to the underlying storage system. See the
documentation for your storage system for details.

Example

CREATE UNIQUE INDEX custindex ON customer (cust_no) ;

Authorization

The user executing this statement must have any of the following privileges:

• DBA privilege

• Ownership of the index.

• INDEX privilege on the table.

SQL Compliance ODBC Core SQL grammar. Extensions: PCTFREE,
STORAGE_ATTRIBUTES, and TYPE

Environment Embedded SQL, interactive SQL, ODBC applications

Related Statements CREATE TABLE, DROP INDEX, ALTER INDEX

CREATE SYNONYM

SQL Statements 5–5

5.3 CREATE SYNONYM

Description

Creates a synonym for the table, view or synonym specified. A synonym is an alias that
SQL statements can use instead of the name specified when the table, view, or synonym
was created.

Syntax

CREATE [PUBLIC] SYNONYM synonym
 FOR [owner_name.] { table_name | view_name | synonym } ;

Arguments

PUBLIC
Specifies that the synonym will be public: all users can refer to the name without
qualifying it. By default, the synonym is private: other users must qualify the synonym
by preceding it with the user name of the user who created it.

Users must have the DBA privilege to create public synonyms.

SYNONYM synonym
Name for the synonym.

FOR [owner_name.] { table_name | view_name | synonym }
Table, view, or synonym for which SQL creates the new synonym.

Example

CREATE SYNONYM customer FOR smith.customer ;
CREATE PUBLIC SYNONYM public_suppliers FOR smith.suppliers ;

Authorization

Users executing CREATE SYNONYM must have the DBA privilege or RESOURCE
privilege. Users executing CREATE PUBLIC SYNONYM statement must have the DBA
privilege.

SQL Compliance Extension

Environment Embedded SQL, interactive SQL, ODBC applications

Related Statements DROP SYNONYM

Overview

5–6 SQL Statements

5.4 CREATE TABLE

Description

Creates a table definition. A table definition consists of a list of column definitions that
make up a table row. SQL provides two forms of the CREATE TABLE statement. The
first form explicitly specifies column definitions. The second form, with the AS
query_expression clause, implicitly defines the columns using the columns in the query
expression.

Syntax

CREATE TABLE [owner_name.] table_name
(column_definition [, { column_definition | table_constraint }] ...)
[TABLE SPACE table_space_name]
[PCTFREE number]
[STORAGE_MANAGER ‘sto-mgr-id’]
[STORAGE_ATTRIBUTES ‘attributes’]
;

CREATE TABLE [owner_name.] table_name
[(column_name [NULL | NOT NULL], ...)]
[TABLE SPACE table_space_name]
[PCTFREE number]
[STORAGE_MANAGER ‘sto-mgr-id’]
[STORAGE_ATTRIBUTES ‘attributes’]
AS query_expression
;

column_definition ::
column_name data_type
[COLLATE collation_name]
[DEFAULT { literal | USER | NULL | UID

| SYSDATE | SYSTIME | SYSTIMESTAMP }]
[column_constraint [column_constraint ...]]

Arguments

owner_name
Specifies the owner of the table. If the name is different from the user name of the user
executing the statement, then the user must have DBA privileges.

table_name
Names the table definition. SQL defines the table in the database named in the last
CONNECT statement.

column_name data_type
Names a column and associates a data type with it. The column names specified must
be different than other column names in the table definition. The data_type must be one
of the supported data types described in "Data Types" on page 4-4.

CREATE TABLE

SQL Statements 5–7

[COLLATE collation_name]
If data_type specifies a character column, the column definition can include an optional
COLLATE clause. The COLLATE clause specifies a collation sequence supported by the
underlying storage system. (See "Specifying the Character Set for Character Data Types"
on page 4-6 for notes on character sets and collations, including the
CASE_INSENSITIVE collation sequence supported for the default character set. See the
documentation for your underlying storage system for details on any supported
collations.)

DEFAULT
Specifies an explicit default value for a column. The column takes on the value if an
INSERT statement does not include a value for the column. If a column definition omits
the DEFAULT clause, the default value is NULL.

The DEFAULT clause accepts the following arguments:

literal An integer, numeric or string constant.

USER The name of the user issuing the INSERT or
UPDATE statement on the table. Valid only for
columns defined with character data types.

NULL A null value.

UID The user id of the user executing the INSERT or
UPDATE statement on the table.

SYSDATE The current date. Valid only for columns
defined with DATE data types.

SYSTIME The current time. Valid only for columns
defined with TIME data types.

SYSTIMESTAMP The current date and time. Valid only for
columns defined with TIMESTAMP data types.

column_constraint
Specifies a constraint that applies while inserting or updating a value in the associated
column. For more information, see "Column Constraints".

table_constraint
Specifies a constraint that applies while inserting or updating a row in the table. For
more information, see "Table Constraints".

TABLE SPACE table_space_name
Specifies the name of the table space where data stored in the table will reside. Table
spaces provide a way to partition tables among different storage areas. In some storage
systems, for instance, table spaces correspond to separate data files among which data
in tables can be distributed. This arrangement can improve performance by distributing
data in a table on different disk drives.

Different storage systems implement the concept of storage areas in different ways, if at
all. So the actual behavior of the TABLE SPACE clause depends on the underlying
storage system. See the documentation for your storage system for more details.

Overview

5–8 SQL Statements

PCTFREE number
Specifies the desired percentage of free space for a table. The PCTFREE clause indicates
to the storage system how much of the space allocated to a table should be left free to
accommodate growth.

However, the actual behavior of the PCTFREE clause depends entirely on the underlying
storage system. The SQL engine passes the PCTFREE value to the storage system, which
may ignore it or interpret it. If the CREATE statement does not include a PCTFREE
clause, the default is 20. See the documentation for your storage system for details.

STORAGE_MANAGER ‘sto-mgr-id’
A quoted string that identifies the storage system. The SQL engine uses the string to
identify which storage system will create the table. If the CREATE TABLE statement
omits the STORAGE_MANAGER clause, the SQL engine uses the string 'default'. What
constitutes a valid name, and how the table is mapped to a specific storage system is
defined by the implementation.

STORAGE_ATTRIBUTES ‘attributes’
A quoted string that specifies table attributes that are specific to a particular storage
system. The SQL engine passes this string to the storage system, and its effects are
defined by the storage manager. See the documentation for your storage system for
details.

AS query_expression
Specifies a query expression to use for the data types and contents of the columns for the
table. The types and lengths of the columns of the query expression result become the
types and lengths of the respective columns in the table created. The rows in the
resultant set of the query expression are inserted into the table after creating the table. In
this form of the CREATE TABLE statement, column names are optional.

If omitted, the names for the table columns are also derived from the query expression.
For more information, see "Query Expressions".

Examples

In the following example, the user issuing the CREATE TABLE statement must have
REFERENCES privilege on the column itemno of the table john.item.

CREATE TABLE supplier_item (
 supp_no INTEGER NOT NULL PRIMARY KEY,
 item_no INTEGER NOT NULL REFERENCES john.item (itemno),
 qty INTEGER
) ;

The following CREATE TABLE statement explicitly specifies a table owner, systpe:

CREATE TABLE systpe.account (
 account integer,
 balance money (12),
 info char (84)
) ;

The following example shows the AS query_expression form of CREATE TABLE to
create and load a table with a subset of the data in the customer table:

CREATE TABLE

SQL Statements 5–9

CREATE TABLE systpe.dealer (name, street, city, state)
 AS
 SELECT name, street, city, state
 FROM customer
 WHERE customer.state IN ('CA','NY', 'TX') ;

The following example includes a NOT NULL column constraint and DEFAULT
clauses for column definitions:

 CREATE TABLE emp (
 empno integer NOT NULL,
 deptno integer DEFAULT 10,
 join_date date DEFAULT NULL
) ;

Authorization

The user executing this statement must have either DBA or RESOURCE privilege. If the
CREATE TABLE statement specifies a foreign key that references a table owned by a
different user, the user must have the REFERENCES privilege on the corresponding
columns of the referenced table.

The AS query_expression form of CREATE TABLE requires the user to have select
privilege on all the tables and views named in the query expression.

SQL Compliance SQL-92, ODBC Minimum SQL grammar. Extensions: TABLE SPACE, PCTFREE,
STORAGE_MANAGER, and AS query_expression

Environment Embedded SQL, interactive SQL , ODBC applications

Related Statements DROP TABLE, Query Expressions

5.4.1 Column Constraints
Description

Specifies a constraint for a column that restricts the values that the column can store.
INSERT, UPDATE, or DELETE statements that violate the constraint fail. SQL returns a
Constraint violation error with SQLCODE of -20116.

Column constraints are similar to table constraints but their definitions are associated
with a single column.

Syntax

column_constraint ::
 NOT NULL [PRIMARY KEY | UNIQUE]
| REFERENCES [owner_name.] table_name [(column_name)]
| CHECK (search_condition)

Arguments

NOT NULL
Restricts values in the column to values that are not null.

Overview

5–10 SQL Statements

NOT NULL PRIMARY KEY
Defines the column as the primary key for the table. There can be atmost one primary
key for a table. A column with the NOT NULL PRIMARY KEY constraint cannot
contain null or duplicate values. Other tables can name primary keys as foreign keys in
their REFERENCES clauses.

Other tables can name primary keys in their REFERENCES clauses. If they do, SQL
restricts operations on the table containing the primary key:

• DROP TABLE statements that delete the table fail

• DELETE and UPDATE statements that modify values in the column that match a
foreign key's value also fail

The following example shows the creation of a primary key column on the table supplier.

CREATE TABLE supplier (
 supp_no INTEGER NOT NULL PRIMARY KEY,
 name CHAR (30),
 status SMALLINT,
 city CHAR (20)
) ;

NOT NULL UNIQUE
Defines the column as a unique key that cannot contain null or duplicate values.
Columns with NOT NULL UNIQUE constraints defined for them are also called
candidate keys.

Other tables can name unique keys in their REFERENCES clauses. If they do, SQL
restricts operations on the table containing the unique key:

• DROP TABLE statements that delete the table fail

• DELETE and UPDATE statements that modify values in the column that match a
foreign key's value also fail

The following example creates a NOT NULL UNIQUE constraint to define the column
ss_no as a unique key for the table employee:

CREATE TABLE employee (
 empno INTEGER NOT NULL PRIMARY KEY,
 ss_no INTEGER NOT NULL UNIQUE,
 ename CHAR (19),
 sal NUMERIC (10, 2),
 deptno INTEGER NOT NULL
) ;

REFERENCES table_name [(column_name)]
Defines the column as a foreign key and specifies a matching primary or unique key in
another table. The REFERENCES clause names the matching primary or unique key.

A foreign key and its matching primary or unique key specify a referential constraint: A
value stored in the foreign key must either be null or be equal to some value in the
matching unique or primary key.

CREATE TABLE

SQL Statements 5–11

You can omit the column_name argument if the table specified in the REFERENCES
clause has a primary key and you want the primary key to be the matching key for the
constraint.

The following example defines order_item.orditem_order_no as a foreign key that
references the primary key orders.order_no.

CREATE TABLE orders (
 order_no INTEGER NOT NULL PRIMARY KEY,
 order_date DATE
) ;

CREATE TABLE order_item (
 orditem_order_no INTEGER REFERENCES orders (order_no),
 orditem_quantity INTEGER
) ;

Note that the second CREATE TABLE statement in the previous example could have
omitted the column name order_no in the REFERENCES clause, since it refers to the
primary key of table orders.

CHECK (search_condition)
Specifies a column-level check constraint. SQL restricts the form of the search condition.
The search condition must not:

• Refer to any column other than the one with which it is defined

• Contain aggregate functions, subqueries, or parameter references

The following example creates a check constraint:

CREATE TABLE supplier (
 supp_no INTEGER NOT NULL,
 name CHAR (30),
 status SMALLINT,
 city CHAR (20) CHECK (supplier.city <> 'MOSCOW')
) ;

5.4.2 Table Constraints
Description

Specifies a constraint for a table that restricts the values that the table can store. INSERT,
UPDATE, or DELETE statements that violate the constraint fail. SQL returns a Constraint
violation error.

Table constraints have syntax and behavior similar to column constraints. Note the
following differences:

• The syntax for table constraints is separated from column definitions by commas.

• Table constraints must follow the definition of columns they refer to.

• Table constraint definitions can include more than one column and SQL evaluates
the constraint based on the combination of values stored in all the columns.

Overview

5–12 SQL Statements

Syntax

table_constraint ::
 PRIMARY KEY (column [, ...])
| UNIQUE (column [, ...])
| FOREIGN KEY (column [, ...])

REFERENCES [owner_name.] table_name [(column [, ...])]
| CHECK (search_condition)

Arguments

PRIMARY KEY (column [, ...])
Defines the column list as the primary key for the table. There can be at most one
primary key for a table.

All the columns that make up a table-level primary key must be defined as NOT NULL,
or the CREATE TABLE statement fails. The combination of values in the columns that
make up the primary key must be unique for each row in the table.

Other tables can name primary keys in their REFERENCES clauses. If they do, SQL
restricts operations on the table containing the primary key:

• DROP TABLE statements that delete the table fail

• DELETE and UPDATE statements that modify values in the combination of columns
that match a foreign key's value also fail

The following example shows creation of a table-level primary key. Note that its
definition is separated from the column definitions by a comma:

CREATE TABLE supplier_item (
 supp_no INTEGER NOT NULL,
 item_no INTEGER NOT NULL,
 qty INTEGER NOT NULL DEFAULT 0,
 PRIMARY KEY (supp_no, item_no)
) ;

UNIQUE (column [, ...])
Defines the column list as a unique, or candidate, key for the table. Unique key table-
level constraints have the same rules as primary key table-level constraints, except that
you can specify more than one UNIQUE table-level constraint in a table definition.

The following example shows creation of a table with two UNIQUE table-level
constraints:

CREATE TABLE order_item (
 order_no INTEGER NOT NULL,
 item_no INTEGER NOT NULL,
 qty INTEGER NOT NULL,
 price MONEY NOT NULL,
 UNIQUE (order_no, item_no),
 UNIQUE (qty, price)
) ;

FOREIGN KEY ... REFERENCES
Defines the first column list as a foreign key and, in the REFERENCES clause, specifies a
matching primary or unique key in another table.

CREATE TABLE

SQL Statements 5–13

A foreign key and its matching primary or unique key specify a referential constraint:
The combination of values stored in the columns that make up a foreign key must either:

• Have at least one of the column values be null

• Be equal to some corresponding combination of values in the matching unique or
primary key

You can omit the column list in the REFERENCES clause if the table specified in the
REFERENCES clause has a primary key and you want the primary key to be the
matching key for the constraint.

The following example defines the combination of columns student_courses.teacher and
student_courses.course_title as a foreign key that references the primary key of the table
courses. Note that the REFERENCES clause does not specify column names because the
foreign key refers to the primary key of the courses table.

CREATE TABLE courses (
 teacher CHAR (20) NOT NULL,
 course_title CHAR (30) NOT NULL,
 PRIMARY KEY (teacher, course_title)
) ;

CREATE TABLE student_courses (
 student_id INTEGER,
 teacher CHAR (20),
 course_title CHAR (30),
 FOREIGN KEY (teacher, course_title) REFERENCES courses
) ;

SQL evaluates the referential constraint to see if it satisfies the following search
condition:

(student_courses.teacher IS NULL
 OR student_courses.course_title IS NULL)
OR
EXISTS (SELECT * FROM student_courses WHERE
 (student_courses.teacher = courses.teacher AND
 student_courses.course_title = courses.course_title)
)

INSERT, UPDATE or DELETE statements that cause the search condition to be false
violate the constraint, fail, and generate an error.

CHECK (search_condition)
Specifies a table-level check constraint. The syntax for table-level and column level
check constraints is identical. Table-level check constraints must be separated by
commas from surrounding column definitions.

SQL restricts the form of the search condition. The search condition must not:

• Refer to any column other than columns that precede it in the table definition

• Contain aggregate functions, subqueries, or parameter references

The following example creates a table with two column-level check constraints and one
table-level check constraint:

Overview

5–14 SQL Statements

CREATE TABLE supplier (
 supp_no INTEGER NOT NULL,
 name CHAR (30),
 status SMALLINT CHECK (
 supplier.status BETWEEN 1 AND 100),
 city CHAR (20) CHECK (
 supplier.city IN ('NEW YORK', 'BOSTON', 'CHICAGO')),
 CHECK (supplier.city <> 'CHICAGO' OR supplier.status = 20)
) ;

CREATE VIEW

SQL Statements 5–15

5.5 CREATE VIEW

Description

Creates a view with the specified name on existing tables and/or views.

Syntax

CREATE VIEW [owner_name.] view_name
[(column_name, column_name,...)]
AS [(] query_expression [)]
[WITH CHECK OPTION] ;

Notes

• The owner_name is made the owner of the created view.

• The column names specified for the view are optional and provide an alias for the
columns selected by the query specification. If the column names are not specified
then the view will be created with the same column names as the tables and/or
views it is based on.

• A view is deletable if deleting rows from that view is allowed. For a view to be
deletable, the view definition has to satisfy the following conditions:

• The first FROM clause contains only one table reference or one view reference.

• There are no aggregate functions, DISTINCT clause, GROUP BY or HAVING
clause in the view definition.

• If the first FROM clause contains a view reference, then the view referred to is
deletable.

• A view is updatable if updating rows from that view is allowed. For a view to be
updatable, the view has to satisfy the following conditions:

• The view is deletable (That is, it satisfies all the conditions specified above for
deletability).

• All the select expressions in the first SELECT clause of the view definition are
simple column references.

• If the first FROM clause contains a view reference, then the view referred to is
updatable.

• A view is insertable if inserting rows into that view is allowed. For a view to be
insertable, the view has to satisfy the following conditions:

• The view is updatable (That is, it satisfies all the conditions specified above for
updatability).

• If the first FROM clause contains a table reference, then all NOT NULL columns
of the table are selected in the first SELECT clause of the view definition.

Overview

5–16 SQL Statements

• If the first FROM clause contains a view reference, then the view referred to is
insertable.

• The WITH CHECK OPTION clause can be specified only if the view is updatable.

• If WITH CHECK OPTION clause is specified when defining a view, then during any
update or insert of a row on this view, it is checked that the updated/inserted row
satisfies the view definition (That is, the row is selectable using the view).

Examples

 CREATE VIEW ne_customers AS
 SELECT cust_no, name, street, city, state, zip
 FROM customer
 WHERE state IN ('NH', 'MA', 'NY', 'VT')
 WITH CHECK OPTION ;

 CREATE VIEW order_count (cust_number, norders) AS
 SELECT cust_no, COUNT(*)
 FROM orders
 GROUP BY cust_no;

Authorization

The user executing this statement must have the following privileges:

• DBA or RESOURCE privilege.

• SELECT privilege on all the tables/views referred to in the view definition.

If owner_name is specified and is different from the name of the user executing the
statement, then the user must have DBA privilege.

SQL Compliance SQL-92, ODBC Core SQL grammar

Environment Embedded SQL, interactive SQL , ODBC applications

Related Statements Query Expressions, DROP VIEW

DELETE

SQL Statements 5–17

5.6 DELETE

Description

Deletes zero, one or more rows from the specified table that satisfy the search condition
specified in the WHERE clause. If the optional WHERE clause is not specified, then the
DELETE statement deletes all rows of the specified table.

Syntax

DELETE FROM [owner_name.] { table_name | view_name }
 [WHERE search_condition];

Notes

• The FROM clause of a subselect statement in the search condition, if any, can refer
only to the table being deleted.

• If the table has primary/candidate keys, and if there exists references from other
tables to the rows to be deleted, the statement is rejected.

Example

DELETE FROM customer
 WHERE customer_name = 'RALPH' ;

Authorization

The user executing this statement must have any of the following privileges:

• DBA privilege.

• Ownership of the table.

• DELETE permission on the table.

If the target is a view, then the DELETE privilege is required on the target base table
referred to in the view definition.

SQL Compliance SQL-92, ODBC Extended SQL grammar

Environment Embedded SQL, interactive SQL , ODBC applications

Related Statements Search Conditions

Overview

5–18 SQL Statements

5.7 DROP INDEX

Description

Deletes an index on the specified table.

Syntax

DROP INDEX [owner_name.]index_name
 [ON [table_owner_name.]table_name]

Arguments

owner_name
If owner_name is specified and is different from the name of the user executing the
statement, then the user must have DBA privileges.

index_name
The name of the index to delete.

table_name
The table_name argument is optional. If specified, index_name is verified to correspond to
the table.

Example

DROP INDEX custindex ON customer ;

Authorization

The user executing this statement must have any of the following privileges:

• DBA privilege

• Ownership of the index

SQL Compliance ODBC Core SQL grammar

Environment Embedded SQL, interactive SQL , ODBC applications

Related Statements CREATE INDEX, ALTER INDEX

DROP SYNONYM

SQL Statements 5–19

5.8 DROP SYNONYM

Description

Drops the specified synonym.

Syntax

DROP [PUBLIC] SYNONYM [owner_name.]synonym ;

Arguments

PUBLIC
Specifies that the synonym was created with the PUBLIC argument.

SQL generates the Base table not found error if DROP SYNONYM specifies PUBLIC and
the synonym was not a public synonym. Conversely, the same error message occurs if
DROP SYNONYM does not specify public and the synonym was created with the
PUBLIC argument.

To drop a public synonym, you must have the DBA privilege.

owner_name
If owner_name is specified and is different from the name of the user executing the
statement, then the user must have DBA privileges.

synonym
Name for the synonym.

Example

 DROP SYNONYM customer ;
 DROP PUBLIC SYNONYM public_suppliers ;

Authorization

Users executing DROP SYNONYM must have either the DBA privilege or be the owner
of the synonym. Users executing DROP PUBLIC SYNONYM must have the DBA
privilege.

SQL Compliance Extension

Environment Embedded SQL, interactive SQL, ODBC applications

Related Statements CREATE SYNONYM

Overview

5–20 SQL Statements

5.9 DROP TABLE

Description

Deletes the specified table.

Syntax

DROP TABLE [owner_name.]table_name ;

Notes

• If owner_name is specified and is different from the name of the user executing the
statement, then the user must have DBA privileges.

• When a table is dropped, the indexes on the table and the privileges associated with
the table are dropped automatically.

• Views dependent on the dropped table are not automatically dropped, but become
invalid.

• If the table is part of another table's referential constraint (if the table is named in
another table's REFERENCES clause), the DROP TABLE statement fails. Use the
ALTER TABLE statement to delete any referential constraints that refer to the table
before issuing the DROP TABLE statement.

Example

DROP TABLE customer ;

Authorization

The user executing this statement must have any of the following privileges:

• DBA privilege.

• Ownership of the table.

SQL Compliance SQL-92, ODBC Minimum SQL grammar

Environment Embedded SQL, interactive SQL , ODBC applications

Related Statements CREATE TABLE

DROP VIEW

SQL Statements 5–21

5.10 DROP VIEW

Description

Deletes the view from the database.

Syntax

DROP VIEW [owner_name.]view_name ;

Notes

If owner_name is specified and is different from the name of the user executing the
statement, then the user must have DBA privileges.

When a view is dropped, other views which are dependent on this view are not
dropped. The dependent views become invalid.

Example

DROP VIEW newcustomers ;

Authorization

The user executing this statement must have any of the following privileges:

• DBA privilege

• Ownership of the view.

SQL Compliance SQL-92, ODBC Core SQL grammar

Environment Embedded SQL, interactive SQL , ODBC applications

Related Statements CREATE VIEW

Overview

5–22 SQL Statements

5.11 GRANT

Description

Grants various privileges to the specified users for the database. There are three forms of
the GRANT statement:

• The first form grants database-wide privileges, either system administration (DBA)
or general creation (RESOURCE)

• The second form grants various privileges on the specified tables or view

• The third form grants the privilege to execute the specified stored procedure

Syntax

GRANT { RESOURCE, DBA }
 TO user_name [, user_name] ... ;

GRANT { privilege [, privilege] ... | ALL [PRIVILEGES] }
 ON table_name
 TO { user_name [, user_name] ... | PUBLIC }
 [WITH GRANT OPTION] ;

GRANT EXECUTE ON procedure_name
 TO { user_name [, user_name] ... | PUBLIC } ;

privilege ::
 { SELECT | INSERT | DELETE | ALTER | INDEX
 | UPDATE [(column, column, ...)]
 | REFERENCES [(column, column, ...)] }

Arguments

DBA
Allows the specified users to create, access, modify, or delete any database object, and to
grant other users any privileges.

RESOURCE
Allows the specified users to issue CREATE statements. The RESOURCE privilege does
not allow users to issue DROP statements on database objects. Only the owner of the
object and users with the DBA privilege can drop database objects.

ALTER
Allows the specified users to modify the table or view

DELETE
Allows the specified users to delete rows in the table or view

INDEX
Allows the specified users to create an index on the table or view.

INSERT
Allows the specified users to add new rows to the table or view.

GRANT

SQL Statements 5–23

SELECT
Allows the specified users to read data in the table or view.

UPDATE [(column, column, ...)]
Allows the specified users to modify existing rows in the table or view. If followed by a
column list, the users can modify values only in the columns named.

REFERENCES [(column, column, ...)]
Allows the specified users to refer to the table from other tables’ constraint definitions. If
followed by a column list, constraint definitions can refer only to the columns named.
For more detail on constraint definitions, see “Table Constraints” and “Column
Constraints”.

ALL
Grants all privileges for the table or view.

ON table_name
The table or view for which SQL grants the specified privileges.

EXECUTE ON procedure_name
Allows execution of the specified stored procedure.

TO user_name [, user_name] ...
The list of users for which SQL grants the specified privileges.

TO PUBLIC
Grants the specified privileges to any user with access to the system.

WITH GRANT OPTION
Allows the specified users to grant their access rights or a subset of their rights to other
users.

Example

GRANT ALTER ON cust_view TO dbuser1 ;

GRANT SELECT ON newcustomers TO dbuser2 ;

GRANT EXECUTE ON sample_proc TO searle;

Authorization

The user granting DBA or RESOURCE privileges must have the DBA privilege.

The user granting privileges on a table must have any of the following privileges:

• DBA privilege

• Ownership of the table

• All the specified privileges on the table, granted with the WITH GRANT OPTION
clause

Overview

5–24 SQL Statements

SQL Compliance SQL-92, ODBC Core SQL grammar. Extensions: ALTER, INDEX, RESOURCE,
DBA privileges

Environment Embedded SQL, interactive SQL , ODBC applications

Related Statements REVOKE

INSERT

SQL Statements 5–25

5.12 INSERT

Description

Inserts new rows into the specified table/view that will contain either the explicitly
specified values or the values returned by the query expression.

Syntax

INSERT INTO [owner_name.] { table_name | view_name }
 [(column_name, column_name, ...)]
 { VALUES (value, value, ...) | query_expression };

Notes

• If the optional list of column names is specified, then only the values for those
columns need be supplied. The rest of the columns of the inserted row will contain
NULL values, provided the table definition allows NULL values and there is no
DEFAULT clause for the columns. If a DEFAULT clause is specified for a column
and the column name is not present in the optional column list, then the column
takes the default value.

• If the optional list is not specified then all the column values have to be either
explicitly specified or returned by the query expression. The order of the values
should be the same as the order in which the columns have been declared in the
declaration of the table/view.

• Explicit specification of the column values provides for insertion of only one row at
a time. The query expression option allows for insertion of multiple rows at a time.

• If the table contains a foreign key, and there does not exist a corresponding primary
key that matches the values of the foreign key in the record being inserted, the insert
operation is rejected.

Examples

INSERT INTO customer (cust_no, name, street, city, state)
 VALUES
 (1001, 'RALPH', '#10 Columbia Street', 'New York', 'NY') ;

 INSERT INTO neworders (order_no, product, qty)
 SELECT order_no, product, qty
 FROM orders
 WHERE order_date = SYSDATE ;

Authorization

The user executing this statement must have any of the following privileges:

• DBA privilege.

• Ownership of the table.

• INSERT privilege on the table.

If a query_expression is specified, then the user must have any of the following privileges:

Overview

5–26 SQL Statements

• DBA privilege.

• SELECT privilege on all the tables/views referred to in the query_expression.

SQL Compliance SQL-92, ODBC Core SQL grammar

Environment Embedded SQL, interactive SQL , ODBC applications

Related Statements Query Expressions

RENAME

SQL Statements 5–27

5.13 RENAME

Description

Renames the specified table name, view name or synonym to the new name specified

Syntax

RENAME [owner_name.] oldname TO [owner_name.] newname ;

Arguments

[owner_name.]
Optional owner-name qualifier for the name. If the owner name is not the same as that
of the current user, the current user must have the DBA privilege.

If specified, the owner name must be the same for oldname and newname. In other words,
you cannot change the owner of a table, view, or synonym with RENAME.

oldname
Current name of the table, view, or synonym.

newname
New name for the table, view, or synonym.

Example

RENAME sitem TO supplier_item ;

Authorization

The user executing this statement must have any of the following privileges:

• DBA privilege

• Ownership of the table/view/synonym.

• ALTER privilege on the table/view.

SQL Compliance Extension

Environment Embedded SQL, interactive SQL, ODBC applications

Related Statements CREATE TABLE, CREATE VIEW, CREATE SYNONYM

Overview

5–28 SQL Statements

5.14 REVOKE

Description

Revokes various privileges to the specified users for the database. There are three forms
of the REVOKE statement:

• The first form revokes database-wide privileges, either system administration (DBA)
or general creation (RESOURCE)

• The second form revokes various privileges on specific tables and views

• The third form revokes the privilege to execute the specified stored procedure

Syntax

REVOKE { RESOURCE | DBA }
 FROM { user_name [, user_name] ... } ;

REVOKE [GRANT OPTION FOR]
 { privilege [, privilege,] ... | ALL [PRIVILEGES] }
 ON table_name
 FROM { user_name [, user_name] ... | PUBLIC } [RESTRICT | CASCADE] ;

REVOKE [GRANT OPTION FOR] EXECUTE ON procedure_name
 FROM { user_name [, user_name] ... | PUBLIC } [RESTRICT | CASCADE] ;

 privilege ::
 {
 SELECT | INSERT | DELETE | ALTER | INDEX
 | UPDATE [(column, column, ...)]
 | REFERENCES [(column, column, ...)]
 }

Arguments

GRANT OPTION FOR
Revokes the grant option for the privilege from the specified users. The actual privilege
itself is not revoked. If specified with RESTRICT, and the privilege was passed on to
other users, the REVOKE statement fails and generates an error. Otherwise, GRANT
OPTION FOR implicitly revokes any rights the user may have in turn given to other
users.

{ privilege [, privilege,] ... | ALL [PRIVILEGES] }
List of privileges to be revoked. See the description in the GRANT statement for details
on specific privileges. Revoking RESOURCE and DBA rights can only be done by the
administrator or a user with DBA rights.

If a user has been granted access to a table by more than one user then all the users have
to perform a revoke for the user to lose his access to the table.

Using the keyword ALL revokes all the rights granted on the table/view.

REVOKE

SQL Statements 5–29

ON table_name
The table or view for which SQL revokes the specified privileges.

EXECUTE ON procedure_name
Revokes the right to execute the specified stored procedure.

FROM user_name [, user_name] ...
Revokes the specified rights on the table or view from the specified list of users.

FROM PUBLIC
Revokes the specified rights on the table or view from any user with access to the system.

RESTRICT | CASCADE
If the REVOKE statement specifies RESTRICT, SQL checks to see if the privilege being
revoked was passed on to other users (possible only if the original privilege included the
WITH GRANT OPTION clause). If so, the REVOKE statement fails and generates an
error. If the privilege was not passed on, the REVOKE statement succeeds.

If the REVOKE statement specifies CASCADE, revoking the access right of a user also
revokes the rights from all users who received the privilege as a result of that user giving
the privilege to others.

If the REVOKE statement specifies neither RESTRICT nor CASCADE, the behavior is the
same as for CASCADE.

Example

REVOKE INSERT ON customer FROM dbuser1 ;
REVOKE ALTER ON cust_view FROM dbuser2 ;

Authorization

The user revoking DBA or RESOURCE privileges must have the DBA privilege.

The user revoking privileges on a table must have any of the following privileges:

• DBA privilege

• Ownership of the table

• All the specified privileges on the table, granted with the WITH GRANT OPTION
clause

SQL Compliance SQL-92, ODBC Core SQL grammar. Extensions: ALTER, INDEX, RESOURCE,
DBA privileges

Environment Embedded SQL, interactive SQL , ODBC applications

Related Statements GRANT

Overview

5–30 SQL Statements

5.15 SELECT

Description

Selects the specified column values from one or more rows contained in the table(s)
specified in the FROM clause. The selection of rows is restricted by the WHERE clause.
The temporary table derived through the clauses of a select statement is called a result
table.

The format of the SELECT statement is a query expression with optional ORDER BY and
FOR UPDATE clauses. For more detail on query expressions, see "Query Expressions".

Syntax

select_statement ::
query_expression
ORDER BY { expr | posn } [COLLATE collation_name] [ASC | DESC]

[, { expr | posn } [COLLATE collation_name] [ASC | DESC] ,...]
FOR UPDATE [OF [table].column_name, ...] [NOWAIT]
;

query_expression ::
 query_specification
| query_expression set_operator query_expression
| (query_expression)

set_operator ::
 { UNION [ALL] | INTERSECT | MINUS }

query_specification ::
SELECT [ALL | DISTINCT]
 {
 *
 | { table_name | alias } . * [, { table_name | alias } . *] …
 | expr [[AS] ['] column_title [']] [, expr [[AS] ['] column_title [']]] ...
 }
FROM table_ref [{ dharma ORDERED }] [, table_ref [{ dharma ORDERED }] …
[WHERE search_condition]
[GROUP BY [table.]column_name [COLLATE collation-name]
 [, [table.]column_name [COLLATE collation-name]] ...
[HAVING search_condition]

table_ref ::
 table_name [AS] [alias [(column_alias [, …])]]
 | (query_expression) [AS] alias [(column_alias [, …])]
 | [(] joined_table [)]

joined_table ::
 table_ref CROSS JOIN table_ref
 | table_ref [INNER | LEFT [OUTER]] JOIN table_ref ON search_condition

SELECT

SQL Statements 5–31

Arguments

query_expression
See Section 4.4.

ORDER BY clause
See Section 5.15.1.

FOR UPDATE clause
See Section 5.15.2.

Authorization

The user executing this statement must have any of the following privileges:

• DBA privilege

• SELECT permission on all the tables/views referred to in the query_expression.

SQL Compliance SQL-92. Extensions: FOR UPDATE clause. ODBC Extended SQL grammar.

Environment Embedded SQL (within DECLARE), interactive SQL, ODBC applications

Related Statements Query Expressions, DECLARE CURSOR, OPEN, FETCH, CLOSE

5.15.1 ORDER BY Clause
Description

The ORDER BY clause specifies the sorting of rows retrieved by the SELECT statement.
SQL does not guarantee the sort order of rows unless the SELECT statement includes an
ORDER BY clause.

Syntax

ORDER BY { expr | posn } [COLLATE collation_name] [ASC | DESC]
[, { expr | posn } [COLLATE collation_name] [ASC | DESC] ,...]

Notes

• Ascending order is the default ordering. The descending order will be used only if
the keyword DESC is specified for that column.

• Each expr is an expression of one or more columns of the tables specified in the
FROM clause of the SELECT statement. Each posn is a number identifying the
column position of the columns being selected by the SELECT statement.

• The selected rows are ordered on the basis of the first expr or posn and if the values
are the same then the second expr or posn is used in the ordering.

• The ORDER BY clause if specified should follow all other clauses of the SELECT
statement.

• A query expression followed by an optional ORDER BY clause can be specified. In
such a case, if the query expression contains set operators, then the ORDER BY
clause can specify only the positions. For example:

Overview

5–32 SQL Statements

 -- Get a merged list of customers and suppliers
 -- sorted by their name.
 (SELECT name, street, state, zip
 FROM customer
 UNION
 SELECT name, street, state, zip
 FROM supplier)
 ORDER BY 1 ;

• If expr or posn refers to a character column, the reference can include an optional
COLLATE clause. The COLLATE clause specifies a collation sequence supported
by the underlying storage system. (See "Specifying the Character Set for Character
Data Types" on page 4-6 for notes on character sets and collations. See the
documentation for your underlying storage system for details on any supported
collations.)

Example

SELECT name, street, city, state, zip
 FROM customer
 ORDER BY name ;

5.15.2 FOR UPDATE Clause
Description

The FOR UPDATE clause specifies update intention on the rows selected by the SELECT
statement.

Syntax

FOR UPDATE [OF [table].column_name, ...] [NOWAIT]Notes

• If FOR UPDATE clause is specified, WRITE locks are acquired on all the rows
selected by the SELECT statement.

• If NOWAIT is specified, an error is returned when a lock cannot be acquired on a
row in the selection set because of the lock held by some other transaction.
Otherwise, the transaction would wait until it gets the required lock or until it times
out waiting for the lock.

SET SCHEMA

SQL Statements 5–33

5.16 SET SCHEMA

Description

SET SCHEMA specifies a new default qualifier for database object names. (Database
objects include tables, indexes, views, synonyms, procedures, and triggers.)

When you connect to a database with a particular user name, that name becomes the
default qualifier for database object names. This means you do not have to qualify
references to tables, for instance, that were created under the same user name. However,
you must qualify references to all other tables with the user name of the user who created
them.

SET SCHEMA allows you to change the user name that SQL uses as the default qualifier
for database object names. The name specified in SET SCHEMA becomes the new
default qualifier for object names.

______________________________ Note_______________________________

SET SCHEMA does not change your user name or affect authentication. It only
changes the default qualifier.
__

Syntax

SET SCHEMA ' qualifier_name ' ;

Arguments

' qualifier_name '
The new qualifier name, enclosed in single quotation marks.

Notes

• SET SCHEMA does not check whether qualifier_name is a valid user name.

• Metadata for objects created without an explicit qualifier will show qualifier_name as
the owner.

• SET SCHEMA does not start or end a transaction.

Examples

The following interactive SQL example shows changing the default qualifier through
SET SCHEMA. The example:

• Invokes ISQL as the user systpe, the owner of the system catalog tables

• Queries the systables catalog tables as systpe

• Uses SET SCHEMA to change the default qualifier to fred

• Creates a table and queries systables to show that the newly-created table is owned
by fred

Overview

5–34 SQL Statements

ISQL> -- What is the user name for the current connection?
ISQL> select user() from syscalctable;
SYSTPE

systpe
1 record selected

ISQL> -- Show the name and owner of non-system tables:
ISQL> select tbl, owner from systables where tbltype <> 'S';
TBL OWNER
--- -----
t1 systpe
test systpe
test dharma
3 records selected

ISQL> set schema 'fred';
ISQL> create table freds_table (c1 int);
ISQL> create index freds_table_ix on freds_table (c1);
ISQL> select tbl, owner from systables where tbltype <> 'S';
select tbl, owner from systables where tbltype <> 'S';
 *
error(-20005): Table/View/Synonym not found
ISQL> -- Oops! Must now qualify references to the systpe-owned tables:
ISQL> select tbl, owner from systpe.systables where tbltype <> 'S';
TBL OWNER
--- -----
t1 systpe
test systpe
test dharma
freds_table fred
4 records selected

Authorization

None.

SQL Compliance SQL-92

Environment Embedded SQL and interactive

Related Statements None

UPDATE

SQL Statements 5–35

5.17 UPDATE

Description

Updates the columns of the specified table with the given values that satisfy the
search_condition.

Syntax

UPDATE table_name
 SET assignment, assignment, ...
 [WHERE search_condition]

assignment ::
 column = { expr | NULL }
 | (column, column, ...) = (expr, expr, ...)
 | (column, column, ...) = (query_expression)

Arguments

• If the optional WHERE clause is specified, then only rows that satisfy the
search_condition are updated. If the WHERE clause is not specified then all rows of
the table are updated.

• The expressions in the SET clause are evaluated for each row of the table if they are
dependent on the columns of the target table.

• If a query expression is specified on the right hand side for an assignment, the
number of expressions in the first SELECT clause of the query expression must be
the same as the number of columns listed on the left hand side of the assignment.

• If a query expression is specified on the right hand side for an assignment, the query
expression must return one row.

• If a table has check constraints and if the columns to be updated are part of a check
expression, then the check expression is evaluated. If the result of evaluation is
FALSE, the UPDATE statement fails.

• If a table has primary/candidate keys and if the columns to be updated are part of
the primary/candidate key, a check is made as to whether there exists any
corresponding row in the referencing table. If so, the UPDATE operation fails.

Examples

UPDATE orders
 SET qty = 12000
 WHERE order_no = 1001 ;

UPDATE orders
 SET (product) =
 (SELECT item_name
 FROM items
 WHERE item_no = 2401
)
 WHERE order_no = 1002 ;

Overview

5–36 SQL Statements

UPDATE orders
 SET (amount) = (2000 * 30)
 WHERE order_no = 1004 ;

UPDATE orders
 SET (product, amount) =
 (SELECT item_name, price * 30
 FROM items
 WHERE item_no = 2401
)
 WHERE order_no = 1002 ;

Authorization

The user executing this statement must have:

• DBA privilege.

• UPDATE privilege on all the specified columns of the target table and SELECT
privilege on all the other tables referred to in the statement.

SQL Compliance SQL-92, ODBC Extended SQL grammar. Extensions: assignments of the form (
column, column, ...) = (expr, expr, ...)

Environment Embedded SQL, interactive SQL , ODBC applications

Related Statements SELECT, OPEN, FETCH, search conditions, query expressions

Server Utility Reference A–1

Appendix A
Server Utility Reference

Overview

This sections contains reference information on utilities used to configure the ODBC
Server.

• The dhdaemon executable image starts the ODBC server and enables network access
from clients.

• On Windows NT, the pcntreg utility registers the dhdaemon executable image as a
service in the system registry.

• mdsql loads metadata into the data dictionary and provides a simple, general-
purpose SQL interface on the server.

• mdcreate creates a data dictionary and provides a name for access to the proprietary
storage system

dhdaemon

The dhdaemon executable image starts the ODBC server and enables network access from
clients:

• On UNIX, dhdaemon is the only way to start the server process.

• On Windows NT, dhdaemon is an alternative to starting the server process as a
service. This alternative allows options not available through starting the server as a
service, which can be useful for using the debugging implementations.

dhdaemon

A–2 Server Utility Reference

Syntax

dhdaemon [option [option ...]] { start | stop | status }

option ::
 -c
| -e server name
| -s service name
| -q

Arguments

-c
On Windows NT, starts the server as a console application. This approach allows you
to use debugging tools and allows user-level environment variables (such as
TPESQLDBG) to affect the dhserver process. (When started as a service, the dhserver
process only sees system environment variables.) The -c option is applicable only to
Windows NT, and required there to start the server from the command line.

-e server name
The name of the executable to use for the ODBC Server process. For example, use the -e
option to specify the sample implementation executable demo as the ODBC Server
process:

$ dhdaemon -e ~dharma/bin/dhdemo start

-s service name
The name of a network service in the services file. If the dhdaemon command does not
include the -s option, the default is sqlnw.

-q
Starts the dhdaemon process in "quiet mode", which displays fewer messages.

start
Starts the dhdaemon process.

stop
Stops the dhdaemon process.

status
Displays the status of the process and any child processes it has spawned. For example:

$ dhdaemon status
 Dharma/dhdaemon Version 6.20.1000
 Dharma Systems Inc (C) 1988-99.
 Dharma Computers Pvt Ltd (C) 1988-99.

Daemon version: Jun 18 1999 18:18:18
 running since: 6/19/99 13:51:27 on isis
Working directory: /u11/v5_work_sdk/dbp.dbs
SQL-Server version: /u11/v5_work_sdk/bin/demo
Nr of servers started: 5
 running: 0
 crashed: 0

pcntreg

Server Utility Reference A–3

pcntreg

Adds and deletes entries for the ODBC SDK in the Windows NT registry.

______________________________ Note_______________________________

The pcntreg utility is only applicable to Windows NT.
__

Syntax

pcntreg { p path | d }

Arguments

p path
Register dhdaemon. The path argument specifies the disk and directory name for the top-
level dharma directory (for example, C:\dharma).

d
Delete the registry entry for dhdaemon.

mdcreate

Creates a data dictionary that stores metadata (details on the structure of SQL tables and
indexes).

Syntax

mdcreate [-v] [-d directory_spec] dbname

Arguments

-v
Specifies verbose mode, so mdcreate generates detailed status messages.

-d directory_spec
Specifies an alternative directory specification in which to create the data dictionary.
This argument is valid only for the Desktop configuration.

The mdcreate utility creates a subdirectory to contain the data dictionary files. It uses the
name specified in the dbname argument for the subdirectory. There are three levels of
defaults that determine where mdcreate creates this subdirectory:

• The directory specified by the -d argument

• If the mdcreate does not specify -d, the directory specified by the TPE_DATADIR
environment variable

• If TPE_DATADIR is not set, mdcreate creates the dbname subdirectory under the
directory specified by the TPEROOT directory.

For example:

$ C:\dharma\bin\mdcreate -d E:\databases demo_db

mdsql

A–4 Server Utility Reference

This command creates a subdirectory called demo_db.dbs under the E:\databases directory
and populates the directory with the necessary files.

Once you create the database subdirectory in this manner, you must explicitly specify its
location in mdsql command lines and when you add ODBC data source names:

• In mdsql, use the -d option to specify the same directory path as you used for
mdcreate. For example:

$ mdsql -s C:\dharma\odbcsdk\sample\md_template -d E:\databases
demo_db

• In the Microsoft ODBC Administrator utility, the ODBC Setup dialog box contains a
Data Dir text-box field. Use it to specify the same directory path as you used for
mdcreate.

dbname
The name of the database. ODBC applications and the mdsql utility specify dbname to
access the database.

mdsql

The primary use for mdsql is to load metadata into data dictionaries via an SQL script,
which contains CREATE TABLE and INDEX statements with the
STORAGE_ATTRIBUTES 'METADATA_ONLY' clause. This clause directs the SQL
engine to insert metadata into the data dictionary without requiring the proprietary
storage system to create an empty table or index. The table or index name used in the
CREATE statement must be the same as an existing table or index in the proprietary
storage system.

You can also use mdsql to create new tables or issue SQL queries interactively. Invoke it
without the -s option and specify the database you want to access. Terminate statements
with a semicolon. To exit from interactive mdsql, type CTRL/D.

Syntax

mdsql [-s script_file] [-u user_name] [-a password] [-d directory_spec] dbname

Arguments

-s script_file
The name of an SQL script file mdsql executes.

-u user_name
The user name to connect to the database specified. The default is the current user of the
operating system. Unless you log in as dharma, you should specify -u dharma on the
mdsql command line.

-a password
The password to connect to the database specified. The default is null.

mdsql

Server Utility Reference A–5

-d directory_spec
An alternative location for the data dictionary directory. This argument is valid only for
the Desktop configuration. If the mdcreate utility specified the -d argument, mdsql must
specify the same argument (or the TPE_DATADIR environment variable should specify
directory_spec).

dbname
The name of the database, as specified to the mdcreate utility.

Reserved Words B–1

Appendix B
Reserved Words

Reserved Keywords

Reserved words are keywords you can use as identifiers in SQL statements if you delimit
them with double quotation marks. If you use keywords without delimiting them, the
statement generates one of the following errors:

error(-20003): Syntax error
error(-20049): Keyword used for a name

The following table lists reserved words. The list is alphabetic and reads left to right.

A ABS ACOS ADD

ADD_MONTHS AFTER ALL ALTER

AN AND ANY ARRAY

AS ASC ASCII ASIN

ATAN ATAN2 AVG BEFORE

BEGIN BETWEEN BIGINT BINARY

BIND BINDING BIT BY

CALL CASCADE CASE CAST

CEILING CHAR CHAR_LENGTH CHARACTER

CHARACTER_LENGTH CHARTOROWID CHECK CHR

CLEANUP CLOSE CLUSTERED COALESCE

COLGROUP COLLATE COLUMN COMMIT

COMPLEX COMPRESS CONCAT CONNECT

CONSTRAINT CONTAINS CONTINUE CONVERT

COS COUNT CREATE CROSS

CURDATE CURRENT CURSOR CURTIME

CVAR DATABASE DATAPAGES DATE

Reserved Keywords

B–2 Reserved Words

DAYNAME DAYOFMONTH DAYOFWEEK DAYOFYEAR

DB_NAME DBA DEC DECIMAL

DECLARATION DECLARE DECODE DEFAULT

DEFINITION DEGREES DELETE DESC

DESCRIBE DESCRIPTOR DHTYPE DIFFERENCE

DISTINCT DOUBLE DROP EACH

ELSE END END ESCAPE

EXCLUSIVE EXEC EXECUTE EXISTS

EXIT EXP EXPLICIT FETCH

FIELD FILE FLOAT FLOOR

FOR FOREIGN FOUND FROM

FULL GO GOTO GRANT

GREATEST GROUP HASH HAVING

HOUR IDENTIFIED IFNULL IMMEDIATE

IN INDEX INDEXPAGES INDICATOR

INITCAP INNER INOUT INPUT

INSERT INSTR INT INTEGER

INTERFACE INTERSECT INTO IS

JOIN KEY LAST_DAY LCASE

LEAST LEFT LEFT LENGTH

LIKE LINK LIST LOCATE

LOCK LOG LOG10 LONG

LONG LOWER LPAD LTRIM

LVARBINARY LVARCHAR MAIN MAX

METADATA_ONLY MIN MINUS MINUTE

MOD MODE MODIFY MONEY

MONTH MONTHNAME MONTHS_BETWEEN NATIONAL

NATURAL NCHAR NEWROW NEXT_DAY

NOCOMPRESS NOT NOW NOWAIT

NULL NULLIF NULLVALUE NUMBER

NUMERIC NVL OBJECT_ID ODBC_CONVERT

ODBCINFO OF OLDROW ON

OPEN OPTION OR ORDER

OUT OUTER OUTPUT PCTFREE

PI POWER PRECISION PREFIX

Reserved Keywords

Reserved Words B–3

PREPARE PRIMARY PRIVILEGES PROCEDURE

PUBLIC QUARTER RADIANS RAND

RANGE RAW REAL RECORD

REFERENCES REFERENCING RENAME REPEAT

REPLACE RESOURCE RESTRICT RESULT

RETURN REVOKE RIGHT RIGHT

ROLLBACK ROW ROWID ROWIDTOCHAR

ROWNUM RPAD RTRIM SEARCHED_CASE

SECOND SECTION SELECT SERVICE

SET SHARE SHORT SIGN

SIMPLE_CASE SIN SIZE SMALLINT

SOME SOUNDEX SPACE SQL

SQL_BIGINT SQL_BINARY SQL_BIT SQL_CHAR

SQL_DATE SQL_DECIMAL SQL_DOUBLE SQL_FLOAT

SQL_INTEGER SQL_LONGVARBINARY SQL_LONGVARCHAR SQL_NUMERIC

SQL_REAL SQL_SMALLINT SQL_TIME SQL_TIMESTAMP

SQL_TINYINT SQL_TSI_DAY SQL_TSI_FRAC_SECOND SQL_TSI_HOUR

SQL_TSI_MINUTE SQL_TSI_MONTH SQL_TSI_QUARTER SQL_TSI_SECOND

SQL_TSI_WEEK SQL_TSI_YEAR SQL_VARBINARY SQL_VARCHAR

SQLERROR SQLWARNING SQRT START

STATEMENT STATISTICS STOP STORAGE_ATTRIBUTES

STORAGE_MANAGER STORE_IN_DHARMA SUBSTR SUBSTRING

SUFFIX SUM SUSER_NAME SYNONYM

SYSDATE SYSTIME SYSTIMESTAMP TABLE

TAN THEN TIME TIMEOUT

TIMESTAMP TIMESTAMPADD TIMESTAMPDIFF TINYINT

TO TO_CHAR TO_DATE TO_NUMBER

TO_TIME TO_TIMESTAMP TPE TRANSACTION

TRANSLATE TRIGGER TYPE UCASE

UID UNION UNIQUE UNSIGNED

UPDATE UPPER USER USER_ID

USER_NAME USING UUID VALUES

VARBINARY VARCHAR VARIABLES VARYING

VERSION VIEW WEEK WHEN

WHENEVER WHERE WITH WORK

Reserved Keywords

B–4 Reserved Words

YEAR

Error Messages C–1

Appendix C
Error Messages

Overview

This appendix lists the error messages generated by the various components of the
Dharma DataLink SDK.

You can receive error messages not only from the SQL engine, but also from underlying
storage systems, including the storage system Dharma supplies for use as a data
dictionary.

Storage systems on which the ODBC SDK is implemented will likely generate their own
error messages. See the documentation for your storage system for details.

Error Codes, SQLSTATE Values, and Messages

Table C–1 lists the Dharma error messages, ordered by error code number.

Table C–1 Error Codes and Messages

Error
Code

SQLSTATE

Value Class Condition Subclass Message

00000 00000 Successful completion ***status okay

100L 02000 no data **sql not found.

10002 02503 No data Tuple not found for the specified TID.

10012 n0n12 flag ETPL_SCAN_EOP flag is set.

10013 02514 No data No more records to be fetched.

10100 2150b Cardinality violation Too many fields specified.

10101 02701 No data No more records exists.

10102 5050c Dharma/SQL rds error Duplicate record specified.

Error Codes, SQLSTATE Values, and Messages

C–2 Error Messages

Error
Code

SQLSTATE

Value Class Condition Subclass Message

10104 22505 Data exception field size is too high.

10106 m0m06 Dharma/SQL rss error Specified index method is not supported.

10107 n0n07 flag EIX_SCAN_EOP flag is set.

10108 2350i Integrity constraint Duplicate primary /index key value.

10301 m030a Dharma/SQL rss error Table is locked and LCKF_NOWAIT.

10400 22501 Data exception Invalid file size for alter log statement.

10920 22521 Data exception Already existing value specified.

11100 5050b Dharma/SQL rds error Invalid transaction id.

11102 5050d Dharma/SQL rds error TDS area specified is not found.

11103 50504 Dharma/SQL rds error TDS not found for binding.

11104 50505 Dharma/SQL rds error Transaction aborted.

11105 50506 Dharma/SQL rds error Active Transaction error.

11109 50510 Dharma/SQL rds error Invalid Transaction handle.

11111 50912 Dharma/SQL rds error Invalid isolation level.

11300 m0m00 Dharma/SQL rss error Specified INFO type is not supported.

11301 m0m01 Dharma/SQL rss error Specified index type is not supported.

15001 60601 dharma/SQL ff errors FF- File IO error

15002 60602 dharma/SQL ff errors FF- No more records

15003 42603 Access violation error FF- Table already exists

15004 22604 Data exception FF- Invalid record number

15005 60605 dharma/SQL ff errors FF- Record deleted

15006 60606 dharma/SQL ff errors FF- Invalid type

15007 60607 dharma/SQL ff errors FF- Duplicate value

15008 08608 Connection exception FF- Database exists

15009 08609 Connection exception FF- No database found

15010 60610 dharma/SQL ff errors FF- Version mis-match

15011 60611 dharma/SQL ff errors FF- Virtual file cache exceeded

15012 60612 dharma/SQL ff errors FF- Physical file open error

15013 60613 dharma/SQL ff errors FF- Corrupt virtual file handle

15014 22614 Data exception FF- Overflow error

15021 60615 dharma/SQL ff errors FF- dbm_calls not implemented

16001 22701 Data exception MM- No data block

Error Codes, SQLSTATE Values, and Messages

Error Messages C–3

Error
Code

SQLSTATE

Value Class Condition Subclass Message

16002 70702 dharma/SQL MM errors MM- Bad swap block

16003 70703 dharma/SQL MM errors MM- No cache block

16004 22704 Data exception MM- Invalid row number

16005 70705 dharma/SQL MM errors MM- Invalid cache block

16006 70706 dharma/SQL MM errors MM- Bad swap file

16007 70707 dharma/SQL MM errors MM- Row too big

16008 70708 dharma/SQL MM errors MM- Array initialized

16009 70709 dharma/SQL MM errors MM- Invalid chunk number

16010 70710 dharma/SQL MM errors MM- Can't create table

16011 70711 dharma/SQL MM errors MM- Can't alter table

16012 70712 dharma/SQL MM errors MM- Can't drop table

16020 70713 dharma/SQL MM errors MM- TPL ctor error

16021 70714 dharma/SQL MM errors MM- Insertion error

16022 70715 dharma/SQL MM errors MM- Deletion error

16023 70716 dharma/SQL MM errors MM- Updation error

16024 70717 dharma/SQL MM errors MM- Fetching error

16025 70718 dharma/SQL MM errors MM- Sorting error

16026 70719 dharma/SQL MM errors MM- Printing error

16027 70720 dharma/SQL MM errors MM- TPLSCAN ctor error

16028 70721 dharma/SQL MM errors MM- Scan fetching error

16030 70722 dharma/SQL MM errors MM- Can't create index

16031 70723 dharma/SQL MM errors MM- Can't drop index

16032 70724 dharma/SQL MM errors MM- IXSCAN ctor error

16033 70725 dharma/SQL MM errors MM- IX ctor error

16034 70726 dharma/SQL MM errors MM- IX deletion error

16035 70727 dharma/SQL MM errors MM- IX appending error

16036 70728 dharma/SQL MM errors MM- IX insertion error

16037 70729 dharma/SQL MM errors MM- IX scan fetching error

16040 70730 dharma/SQL MM errors MM- Begin transaction

16041 70731 dharma/SQL MM errors MM- Commit transaction

16042 40000 Transaction rollback ***MM- Rollback transaction

16043 70732 dharma/SQL MM errors MM- Mark point

Error Codes, SQLSTATE Values, and Messages

C–4 Error Messages

Error
Code

SQLSTATE

Value Class Condition Subclass Message

16044 70733 dharma/SQL MM errors MM- Rollback savepoint

16045 70734 dharma/SQL MM errors MM- Set & Get isolation

16050 70735 dharma/SQL MM errors MM- TID to char

16051 70736 dharma/SQL MM errors MM- char to TID

20000 50501 dharma/SQL rds error SQL internal error

20001 50502 dharma/SQL rds error Memory allocation failure

20002 50503 dharma/SQL rds error Open database failed

20003 2a504 Syntax error Syntax error

20004 28505 Invalid auth specs User not found

20005 22506 Data exception Table/View/Synonym not found

20006 22507 Data exception Column not found/specified

20007 22508 Data exception No columns in table

20008 22509 Data exception Inconsistent types

20009 22510 Data exception Column ambiguously specified

20010 22511 Data exception Duplicate column specification

20011 22512 Data exception Invalid length

20012 22513 Data exception Invalid precision

20013 22514 Data exception Invalid scale

20014 22515 Data exception Missing input parameters

20015 22516 Data exception Subquery returns multiple rows

20016 22517 Data exception Null value supplied for a mandatory (not null)
column

20017 22518 Data exception Too many values specified

20018 22519 Data exception Too few values specified

20019 50520 dharma/SQL rds error Can not modify table referred to in subquery

20020 42521 Access rule violation Bad column specification for group by clause

20021 42522 Access rule violation Non-group-by expression in having clause

20022 42523 Access rule violation Non-group-by expression in select clause

20023 42524 Access rule violation Aggregate function not allowed here

20024 0a000 feature not supported Sorry, operation not yet implemented

20025 42526 Access rule violation Aggregate functions nested

20026 50527 dharma/SQL rds error Too many table references

20027 42528 Access rule violation Bad field specification in order by clause

Error Codes, SQLSTATE Values, and Messages

Error Messages C–5

Error
Code

SQLSTATE

Value Class Condition Subclass Message

20028 50529 dharma/SQL rds error An index with the same name already exists

20029 50530 dharma/SQL rds error Index referenced not found

20030 22531 Data exception Table space with same name already exists

20031 50532 dharma/SQL rds error Cluster with same name already exists

20032 50533 dharma/SQL rds error No cluster with this name

20033 22534 Data exception Tablespace not found

20034 50535 dharma/SQL rds error Bad free percentage specification

20035 50536 dharma/SQL rds error At least column spec or null clause should be
specified

20036 07537 dynamic sql error Statement not prepared

20037 24538 Invalid cursor state Executing select statement

20038 24539 Invalid cursor state Cursor not closed

20039 24540 Invalid cursor state Open for non select statement

20040 24541 Invalid cursor state Cursor not opened

20041 22542 Data exception Table/View/Synonym already exists

20042 2a543 Syntax error Distinct specified more than once in query

20043 50544 dharma/SQL rds error Tuple size too high

20044 50545 dharma/SQL rds error Array size too high

20045 08546 Connection exception File does not exist or not accessible

20046 50547 dharma/SQL rds error Field value not null for some tuples

20047 42548 Access rule violation Granting to self not allowed

20048 42549 Access rule violation Revoking for self not allowed

20049 22550 Data exception Keyword used for a name

20050 21551 Cardinality violation Too many fields specified

20051 21552 Cardinality violation Too many indexes on this table

20052 22553 Data exception Overflow/Underflow error

20053 08554 Connection exception Database not opened

20054 08555 Connection exception Database not specified or improperly specified

20055 08556 Connection exception Database not specified or Database not started

20056 28557 Invalid auth specs No DBA access rights

20057 28558 Invalid auth specs No RESOURCE privileges

20058 40559 Transaction rollback Executing SQL statement for an aborted
transaction

Error Codes, SQLSTATE Values, and Messages

C–6 Error Messages

Error
Code

SQLSTATE

Value Class Condition Subclass Message

20059 22560 Data exception No files in the table space

20060 22561 Data exception Table not empty

20061 22562 Data exception Input parameter size too high

20062 42563 Syntax error Full pathname not specified

20063 50564 dharma/SQL rds error Duplicate file specification

20064 08565 Connection exception Invalid attach type

20065 26000 Invalid SQL statement name Invalid statement type

20066 33567 Invalid SQL descriptor name Invalid sqlda

20067 08568 Connection exception More than one database can't be attached locally

20068 42569 Syntax error Bad arguments

20069 33570 Invalid SQL descriptor name SQLDA size not enough

20070 33571 Invalid SQL descriptor name SQLDA buffer length too high

20071 42572 Access rule violation Specified operation not allowed on the view

20072 50573 dharma/SQL rds error Server is not allocated

20073 2a574 Access rule violation View query specification for view too long

20074 2a575 Access rule violation View column list must be specified as expressions
are given

20075 21576 Cardinality violation Number of columns in column list is less than in
select list

20076 21577 Cardinality violation Number of columns in column list is more than
in select list

20077 42578 Access rule violation Check option specified for non-insertable view

20078 42579 Access rule violation Given SQL statement is not allowed on the view

20079 50580 dharma/SQL rds error More Tables cannot be created.

20080 44581 Check option violation View check option violation

20081 22582 Data exception No of expressions projected on either side of set-
op don't match

20082 42583 Access rule violation Column names not allowed in order by clause for
this statement

20083 42584 Access rule violation Outerjoin specified on a complex predicate

20084 42585 Access rule violation Outerjoin specified on a sub_query

20085 42586 Access rule violation Invalid Outerjoin specification

20086 42587 Access rule violation Duplicate table constraint specification

20087 21588 Cardinality violation Column count mismatch

Error Codes, SQLSTATE Values, and Messages

Error Messages C–7

Error
Code

SQLSTATE

Value Class Condition Subclass Message

20088 28589 Invalid auth specs Invalid user name

20089 22590 Data exception System date retrieval failed

20090 42591 Access rule violation Table columnlist must be specified as expressions
are given

20091 2a592 Access rule violation Query statement too long.

20092 2d593 Invalid transaction termination No tuples selected by the subquery for update

20093 22594 Data exception Synonym already exists

20094 hz595 Remote database access Database link with same name already exists

20095 hz596 Remote database access Database link not found

20096 08597 Connection exception Connect String not specified/incorrect

20097 hz598 Remote database access Specified operation not allowed on a remote
table

20098 22599 Data exception More than one row selected by the query

20099 24000 Invalid cursor state Cursor not positioned on a valid row

20100 4250a Access rule violation Subquery not allowed here

20101 2350b Integrity constraint No references for the table

20102 2350c Integrity constraint Primary/Candidate key column defined null

20103 2350d Integrity constraint No matching key defined for the referenced table

20104 2350e Integrity constraint Keys in reference constraint incompatible

20105 5050f dharma/SQL rds error Statement not allowed in readonly isolation level

20106 2150g Cardinality violation Invalid ROWID

20107 hz50h Remote database access Remote Database not started

20108 0850i Connection exception Remote Network Server not started.

20109 hz50j Remote database access Remote Database Name not valid

20110 0850k Connection exception TCP/IP Remote HostName is unknown.

20114 33002 Invalid SQL descriptor name Fetched Value NULL & indicator var not defined

20115 5050l dharma/SQL rds error References to the table/record present

20116 2350m Integrity constraint Constraint violation

20117 2350n Integrity constraint Table definition not complete

20118 4250o Access rule violation Duplicate constraint name

20119 2350p Integrity constraint Constraint name not found

20120 22000 Data exception **use of reserved word

20121 5050q dharma/SQL rds error permission denied

Error Codes, SQLSTATE Values, and Messages

C–8 Error Messages

Error
Code

SQLSTATE

Value Class Condition Subclass Message

20122 5050r dharma/SQL rds error procedure not found

20123 5050s dharma/SQL rds error invalid arguments to procedure

20124 5050t dharma/SQL rds error Query conditionally terminated

20125 0750u Dynamic sql-error Number of open cursors exceeds limit

20126 34000 Invalid cursor name ***Invalid cursor name

20127 07001 Dynamic sql-error Bad parameter specification for the statement

20128 2250x Data Exception Numeric value out of range.

20129 2250y Data Exception Data truncated.

20130 40000 Dharma/SQL rds error Rolled back transaction.

20131 50522 dharma/SQL rds error Value for Parameter marker is Missing

20132 5050u dharma/SQL rds error Revoke failed because of restrict

20133 0a001 Feature not supported Feature not supported

20133 0a000 feature not supported Sorry, Feature not supported in this Edition.

20134 5050v dharma/SQL rds error Invalid long datatype column references

20135 5050x dharma/SQL rds error Contains operator is not supported in this context

20135 m0m01 dharma/SQL diagnostics error diagnostics statement failed.

20136 5050z dharma/SQL rds error Contains operator is not supported for this
datatype

20137 50514 dharma/SQL rds error Index is not defined or does not support
CONTAINS

20138 50513 dharma/SQL rds error Index on long fields requires that it can push
down only CONTAINS

20140 50512 dharma/SQL rds error Procedure already exists

20141 85001 dharma/SQL Stored procedure
Compilation

Error in Stored Procedure Compilation.

20142 86001 dharma/SQL Stored procedure
Execution

Error in Stored Procedure Execution.

20143 86002 dharma/SQL Stored procedure
Execution

Too many recursions in call procedure.

20144 86003 dharma/SQL Stored procedure
Execution

Null value fetched.

20145 86004 dharma/SQL Stored procedure
Execution

Invalid field reference.

20146 86005 dharma/SQL Triggers Trigger with this name already exists.

20147 86006 dharma/SQL Triggers Trigger with this name does not exist.

Error Codes, SQLSTATE Values, and Messages

Error Messages C–9

Error
Code

SQLSTATE

Value Class Condition Subclass Message

20148 86007 dharma/SQL Triggers Trigger Execution Failed.

20150 50512z dharma/SQL rds error view manager ID is not found.

20151 50515 dharma/SQL rds error Cannot drop all columns; use DROP TABLE
instead

20152 50516 dharma/SQL rds error Cannot preallocate memory for n cache items

20153 50517 dharma/SQL rds error Tree not present in cache ; search failed

20154 50518 dharma/SQL rds error Statement cache insert failed

20155 50519 dharma/SQL rds error Environment variable used for the creation of
multi component index is not set properly.

20156 50521 dharma/SQL rds error No SQL statement

20157 50523 dharma/SQL rds error Invalid JSP/T method sequence.

20211 22800 Data exception Remote procedure call error

20212 08801 Connection exception SQL client bind to daemon failed

20213 08802 Connection exception SQL client bind to SQL server failed

20214 08803 Connection exception SQL NETWORK service entry is not available

20215 08804 Connection exception Invalid TCP/IP hostname

20216 hz805 Remote database access Invalid remote database name

20217 08806 Connection exception network error on server

20218 08807 Connection exception Invalid protocol

20219 2e000 Invalid connection name ***Invalid connection name

20220 08809 Connection exception Duplicate connection name

20221 08810 Connection exception No active connection

20222 08811 Connection exception No environment defined database

20223 08812 Connection exception Multiple local connections

20224 08813 Connection exception Invalid protocol in connect_string

20225 08814 Connection exception Exceeding permissible number of connections

20226 80815 dharma/SQL snw errors Bad database handle

20227 08816 Connection exception Invalid host name in connect string

20228 28817 Invalid auth specs Access denied (Authorization failed)

20229 22818 Data exception Invalid date value

20230 22819 Data exception Invalid date string

20231 22820 Data exception Invalid number strings

20232 22821 Data exception Invalid number string

Error Codes, SQLSTATE Values, and Messages

C–10 Error Messages

Error
Code

SQLSTATE

Value Class Condition Subclass Message

20233 22822 Data exception Invalid time value

20234 22523 Data exception Invalid time string

20235 22007 Data exception Invalid time stamp string

20236 22012 Data exception Division by zero attempted

20238 22615 Data exception Error in format type

20239 2c000 Invalid character set name Invalid character set name specified.

20240 5050y dharma/SQL rds errors Invalid collation name specified.

20241 08815 Connection Exception Service in use.

20242 22008 Data exception Invalid timestamp

20300 90901 dharma/DBS errors Column group column doesn't exist

20301 90902 dharma/DBS errors Column group column already specified

20302 90903 dharma/DBS errors Column group name already specified

20303 90904 dharma/DBS errors Column groups haven't covered all columns

20304 90905 dharma/DBS errors Column groups are not implemented in Dharma
storage

23000 22563 dharma/SQL Data exception Table create returned invalid table id

23001 22564 dharma/SQL Data exception Index create returned invalid index id

25001 i0i01 dharma/SQL odbc integrator Operation is valid only on a linked table

25002 i0i02 dharma/SQL odbc integrator Operation not allowed on a linked table

25003 i0i03 dharma/SQL odbc integrator Copy object exists

25004 i0i04 dharma/SQL odbc integrator Unknown copy object

25005 i0i05 dharma/SQL odbc integrator Dropping table failed

25006 i0i06 dharma/SQL odbc integrator Bad copy sql statement

25007 i0i07 dharma/SQL odbc integrator Unknown data type

25008 i0i08 dharma/SQL odbc integrator Bad insert statement

25009 i0i09 dharma/SQL odbc integrator Fetch operation failed

25010 i0i10 dharma/SQL odbc integrator Insert operation failed

25011 i0i11 dharma/SQL odbc integrator Operation not started

25012 i0i12 dharma/SQL odbc integrator Operation marked for abort

25013 i0i13 dharma/SQL odbc integrator Commit operation failed

25014 i0i14 dharma/SQL odbc integrator Create table failed

25015 i0i15 dharma/SQL odbc integrator Bad sync sql statement

25016 i0i16 dharma/SQL odbc integrator Sync object exists

Error Codes, SQLSTATE Values, and Messages

Error Messages C–11

Error
Code

SQLSTATE

Value Class Condition Subclass Message

25017 i0i17 dharma/SQL odbc integrator Create sync object failed

25018 i0i18 dharma/SQL odbc integrator Create copy object failed

25019 i0i19 dharma/SQL odbc integrator Unknown sync object

25020 i0i20 dharma/SQL odbc integrator Illegal column name

25021 i0i21 dharma/SQL odbc integrator Duplicate column name

25022 i0i22 dharma/SQL odbc integrator Install failure

25023 i0i23 dharma/SQL odbc integrator Invalid sync mode

25024 i0i24 dharma/SQL odbc integrator Download or snapshot table missing

25025 i0i25 dharma/SQL odbc integrator Upload table missing

25026 i0i26 dharma/SQL odbc integrator Update operation failed

25027 i0i27 dharma/SQL odbc integrator Delete operation failed

25028 i0i28 dharma/SQL odbc integrator Close cursor failed

25029 i0i29 dharma/SQL odbc integrator No primary key

25030 i0i30 dharma/SQL odbc integrator Missing row

25031 i0i31 dharma/SQL odbc integrator Bad primary key

25032 i0i32 dharma/SQL odbc integrator Update contention

25033 i0i33 dharma/SQL odbc integrator Link table failed

25034 i0i34 dharma/SQL odbc integrator Unlink table failed

25035 i0i35 dharma/SQL odbc integrator Link data source failed

25036 i0i36 dharma/SQL odbc integrator Unlink data source failed

25037 i0i37 dharma/SQL odbc integrator Integrator internal error

25038 i0i38 dharma/SQL odbc integrator Operation already started

25039 i0i39 dharma/SQL odbc integrator Opening of copy sql stmt failed

25040 i0i40 dharma/SQL odbc integrator sync object failed

25041 i0i41 dharma/SQL odbc integrator Dropping copy object failed

25042 i0i42 dharma/SQL odbc integrator Closing copy sql stmt failed

25043 i0i43 dharma/SQL odbc integrator Failure to update metadata timestamp

25101 j0j01 dharma/SQL odbc trans layer SQLAllocEnv failed

25102 j0j02 dharma/SQL odbc trans layer SQLAllocConnect failed

25103 j0j03 dharma/SQL odbc trans layer SQLConnect failed

25104 j0j04 dharma/SQL odbc trans layer SQLGetConnectOption failed

25105 j0j05 dharma/SQL odbc trans layer SQLSetConnectOption failed

Error Codes, SQLSTATE Values, and Messages

C–12 Error Messages

Error
Code

SQLSTATE

Value Class Condition Subclass Message

25106 j0j06 dharma/SQL odbc trans layer Failed to map stmt handle to UUID

25107 j0j07 dharma/SQL odbc trans layer SQLSetParam failed

25108 j0j08 dharma/SQL odbc trans layer SQLDisconnect failed

25109 j0j09 dharma/SQL odbc trans layer SQLExecute failed

25110 j0j10 dharma/SQL odbc trans layer SQLRowCount failed

25111 j0j11 dharma/SQL odbc trans layer SQLSetParam failed

25112 j0j12 dharma/SQL odbc trans layer SQLBindCol failed

25113 j0j13 dharma/SQL odbc trans layer SQLPrepare failed

25114 j0j14 dharma/SQL odbc trans layer SQLResultCols failed

25115 j0j15 dharma/SQL odbc trans layer SQLDescribeCol failed

25116 j0j16 dharma/SQL odbc trans layer SQLFreeStmt failed

25117 j0j17 dharma/SQL odbc trans layer SQLFetch failed

25118 j0j18 dharma/SQL odbc trans layer SQLTransact failed

25119 j0j19 dharma/SQL odbc trans layer SQLAllocStmt failed

25120 j0j20 dharma/SQL odbc trans layer SQLTables failed

25121 j0j21 dharma/SQL odbc trans layer SQLColumns failed

25122 j0j22 dharma/SQL odbc trans layer SQLStatistics failed

25123 j0j23 dharma/SQL odbc trans layer ODBC Driver interface mismatch

25124 j0j24 dharma/SQL odbc trans layer ODBC Driver metadata exceeds storage limits

25125 j0j25 dharma/SQL odbc trans layer SQLGetInfo failed

25126 j0j26 dharma/SQL odbc trans layer operation not allowed on the read-only database

25127 j0j27 dharma/SQL odbc trans layer cannot update views-with-check-option on
remote tables

25128 j0j28 dharma/SQL odbc trans layer query terminated as max row limit exceeded for a
remote table

25131 j0j29 dharma/SQL odbc trans layer unable to read column info from remote table

26001 08001 dharma/SQL JDBC errors Unable to connect to data source

26002 08003 dharma/SQL JDBC errors Connection does not exist

26003 08S01 dharma/SQL JDBC errors Communication link failure

26004 08597 dharma/SQL JDBC errors Connect String not specified/incorrect

26005 0850i dharma/SQL JDBC errors Remote Network Server not started

26006 0850k dharma/SQL JDBC errors TCP/IP Remote HostName is unknown

26007 08801 dharma/SQL JDBC errors SQL client bind to daemon failed

Error Codes, SQLSTATE Values, and Messages

Error Messages C–13

Error
Code

SQLSTATE

Value Class Condition Subclass Message

26008 08802 dharma/SQL JDBC errors SQL client bind to SQL server failed

26009 08803 dharma/SQL JDBC errors SQL Network service entry is not available

26010 08804 dharma/SQL JDBC errors Invalid TCP/IP hostname

26011 08806 dharma/SQL JDBC errors Network error on server

26012 08807 dharma/SQL JDBC errors Invalid protocol

26013 08816 dharma/SQL JDBC errors Invalid host name in connect string

26014 08809 dharma/SQL JDBC errors Duplicate connection name

26015 08810 dharma/SQL JDBC errors No active connection

26016 08812 dharma/SQL JDBC errors Multiple local connections

26017 08813 dharma/SQL JDBC errors Invalid protocol in connect_string

26018 08814 dharma/SQL JDBC errors Exceeding permissible number of connections

26019 22818 dharma/SQL JDBC errors Invalid date value

26020 22819 dharma/SQL JDBC errors Invalid date string

26021 22820 dharma/SQL JDBC errors Invalid number strings

26022 22821 dharma/SQL JDBC errors Invalid number string

26023 22822 dharma/SQL JDBC errors Invalid time value

26024 22523 dharma/SQL JDBC errors Invalid time string

26025 22007 dharma/SQL JDBC errors Invalid time stamp string

26026 50501 dharma/SQL JDBC errors SQL internal error

26027 50502 dharma/SQL JDBC errors Memory allocation failure

26028 22509 dharma/SQL JDBC errors Inconsistent types

26029 22515 dharma/SQL JDBC errors Missing input parameters

26030 0a000 dharma/SQL JDBC errors Sorry, operation not yet implemented

26031 24538 dharma/SQL JDBC errors Executing select statement

26032 24539 dharma/SQL JDBC errors Cursor not closed

26033 24540 dharma/SQL JDBC errors Open for non select statement

26034 22553 dharma/SQL JDBC errors Overflow error

26035 08555 dharma/SQL JDBC errors Database not specified or improperly specified

26036 08556 dharma/SQL JDBC errors Database not specified or Database not started

26037 22562 dharma/SQL JDBC errors Input parameter size too high

26038 26000 dharma/SQL JDBC errors Invalid statement type

26039 07001 dharma/SQL JDBC errors Wrong number of parameters

Error Codes, SQLSTATE Values, and Messages

C–14 Error Messages

Error
Code

SQLSTATE

Value Class Condition Subclass Message

26040 2250x dharma/SQL JDBC errors Numeric value out of range.

26041 2250y dharma/SQL JDBC errors Data truncated.

26042 22800 dharma/SQL JDBC errors Remote procedure call error

26043 S1001 dharma/SQL JDBC errors Memory allocation failure

26044 S1109 dharma/SQL JDBC errors Invalid Cursor position

26045 S1010 dharma/SQL JDBC errors Function sequence error

26046 24000 dharma/SQL JDBC errors Invalid cursor state

26047 S1106 dharma/SQL JDBC errors Fetch type out of range

26048 S1107 dharma/SQL JDBC errors Row value out of range

26049 S1002 dharma/SQL JDBC errors Invalid column number

26050 S1C00 dharma/SQL JDBC errors Driver not capable

26051 S1T00 dharma/SQL JDBC errors Timeout expired

26052 S1090 dharma/SQL JDBC errors Invalid string or buffer length

26053 34000 dharma/SQL JDBC errors Invalid cursor name

26054 3C000 dharma/SQL JDBC errors Duplicate cursor name

26055 S1009 dharma/SQL JDBC errors Invalid argument value

26056 S1004 dharma/SQL JDBC errors SQL data type out of range

26057 S1008 dharma/SQL JDBC errors Operation canceled

26058 S1094 dharma/SQL JDBC errors Invalid scale value

26059 S1104 dharma/SQL JDBC errors Invalid precision value

26060 S1093 dharma/SQL JDBC errors Invalid parameter number

26061 S1009 dharma/SQL JDBC errors Invalid argument value

26062 08004 dharma/SQL JDBC errors Data source rejected establishment of connection

26063 S1000 dharma/SQL JDBC errors General error

26064 01002 dharma/SQL JDBC errors Disconnect error

26065 IM001 dharma/SQL JDBC errors Driver does not support this function

26066 IM002 dharma/SQL JDBC errors Data source not found and no default driver
specified

26067 IM003 dharma/SQL JDBC errors Specified driver could not be loaded

26068 S1015 dharma/SQL JDBC errors No cursor name available

26069 07006 dharma/SQL JDBC errors Restricted data type attribute violation

30001 5050w dharma/SQL rds errors Query aborted on user request

30002 k0k02 dharma/SQL network interface invalid network handle

Error Codes, SQLSTATE Values, and Messages

Error Messages C–15

Error
Code

SQLSTATE

Value Class Condition Subclass Message

30003 k0k03 dharma/SQL network interface invalid sqlnetwork INTERFACE

30004 k0k04 dharma/SQL network interface invalid sqlnetwork INTERFACE procedure

30005 k0k05 dharma/SQL network interface INTERFACE is already attached

30006 k0k06 dharma/SQL network interface INTERFACE entry not found

30007 k0k07 dharma/SQL network interface INTERFACE is already registered

30008 k0k08 dharma/SQL network interface mismatch in pkt header size and total argument
size

30009 k0k09 dharma/SQL network interface invalid server id

30010 k0k10 dharma/SQL network interface reply does not match the request

30011 k0k02 dharma/SQL network interface memory allocation failure

30031 k0k11 dharma/SQL network interface error in transmission of packet

30032 k0k12 dharma/SQL network interface error in reception of packet

30033 k0k13 dharma/SQL network interface no packet received

30034 k0k14 dharma/SQL network interface connection reset

30051 k0k15 dharma/SQL network interface network handle is inprocess handle

30061 k0k16 dharma/SQL network interface could not connect to sql network daemon

30062 k0k17 dharma/SQL network interface error in number of arguments

30063 k0k18 dharma/SQL network interface requested INTERFACE not registered

30064 k0k19 dharma/SQL network interface invalid INTERFACE procedure id

30065 k0k20 dharma/SQL network interface requested server executable not found

30066 k0k21 dharma/SQL network interface invalid configuration information

30067 k0k22 dharma/SQL network interface INTERFACE not supported

30091 k0k23 dharma/SQL network interface invalid service name

30092 k0k24 dharma/SQL network interface invalid host

30093 k0k25 dharma/SQL network interface error in tcp/ip accept call

30094 k0k26 dharma/SQL network interface error in tcp/ip connect call

30095 k0k27 dharma/SQL network interface error in tcp/ip bind call

30096 k0k28 dharma/SQL network interface error in creating socket

30097 k0k29 dharma/SQL network interface error in setting socket option

30101 k0k30 dharma/SQL network interface interrupt occured

30102 k0k31 dharma/SQL network interface Client/Server not WideChar Compatible

40001 L0L01 dharma/SQL env error Error in reading configuration

50000 60614 dharma/SQL DHRSS errors DHRSS- Improper call to DFLT SS

System Catalog Tables D–1

Appendix D
System Catalog Tables

Overview

The Dharma DataLink SDK maintains a set of system tables for storing information
about table spaces, tables, columns, indexes, constraints, and privileges. These tables
are called system catalog or dictionary tables.

SQL data definition statements and GRANT and REVOKE statements update system
catalog tables. Users have read access to the system catalog tables. The database
administrator has update access to the tables, but should avoid modifying them directly.

There are two types of tables in the system catalog: base tables and extended tables. Base
tables store the information on the table spaces, tables, columns, and indexes that make
up the database. The extended tables contain information on constraints, privileges, and
statistical information.

The owner of the system tables is dharma. If you connect to a Dharma environment with
a User ID other than dharma, you need to qualify references to the tables in SQL queries.
For example:

SELECT * FROM DHARMA.SYSTABLES

Table D–1 shows details of the columns in each system table. Here is the SQL query that
generated the data for Table D–1. You can modify it to generate a similar list that
includes user-created tables by omitting the line and st.tbltype = 'S'.

select sc.tbl 'Table', sc.col 'Column',
 sc.coltype 'Data Type', sc.width 'Size'
from systpe.syscolumns sc, systpe.systables st
where sc.tbl = st.tbl
 and st.tbltype = 'S'
order by sc.tbl, sc.id

System Catalog Tables Definitions

D–2 System Catalog Tables

System Catalog Tables Definitions

Table D–1 lists all the tables in the system catalog. It gives a brief description of their
purpose and lists the column definitions for every table.

Table D–1 System Catalog Table Definitions

Table Purpose Column Data
Type

Size

sys_chk_constrs Contains the CHECK
clause for each check
constraint specified on a
user table.

chkclause varchar 2000

chkseq integer 4

cnstrname varchar 32

owner varchar 32

tblname varchar 32

sys_chkcol_usag
e

Contains one entry for
each column on which the
check constraint is
specified

cnstrname varchar 32

colname varchar 32

owner varchar 32

tblname varchar 32

sys_keycol_usag
e

Contains one entry for
each column on which
primary or foreign key is
specified

cnstrname varchar 32

colname varchar 32

colposition integer 4

owner varchar 32

tblname varchar 32

sys_ref_constrs Contains one entry for
each referential constraint
specified on a user table

cnstrname varchar 32

deleterule varchar 1

owner varchar 32

refcnstrname varchar 32

refowner varchar 32

System Catalog Tables Definitions

System Catalog Tables D–3

Table Purpose Column Data
Type

Size

reftblname varchar 32

tblname varchar 32

sys_tbl_constrs Contains one entry for
each table constraint.

cnstrname varchar 32

cnstrtype varchar 1

idxname varchar 32

owner varchar 32

tblname varchar 32

syscalctable Contains exactly one row
with a single column with
a value of 100.

fld integer 4

syscolauth Contains the update
privileges held by users on
individual columns of
tables in the database.

col varchar 32

grantee varchar 32

grantor varchar 32

ref varchar 1

tbl varchar 32

tblowner varchar 32

upd varchar 1

syscolumns Contains one row for each
column of every table in
the database.

charset varchar 32

col varchar 32

collation varchar 32

coltype varchar 10

dflt_value varchar 250

id integer 4

nullflag varchar 1

owner varchar 32

scale integer 4

tbl varchar 32

width integer 4

System Catalog Tables Definitions

D–4 System Catalog Tables

Table Purpose Column Data
Type

Size

sysdatatypes Contains information on
each data type supported
by the database.

autoincr smallint 2

casesensitive smallint 2

createparams varchar 32

datatype smallint 2

dhtypename varchar 32

literalprefix varchar 1

literalsuffix varchar 1

localtypename varchar 1

nullable smallint 2

odbcmoney smallint 2

searchable smallint 2

typeprecision integer 4

unsignedattr smallint 2

sysdbauth Contains the database-
wide privileges held by
users.

dba_acc varchar 1

grantee varchar 32

res_acc varchar 1

sysidxstat Contains statistics for each
index in the database.

idxid integer 4

nleaf integer 4

nlevels smallint 2

recsz integer 4

rssid integer 4

tblid integer 4

sysindexes Contains one row for each
component of an index in
the database. For an index
with n components, there
will be n rows in this table.

colname varchar 32

id integer 4

idxcompress varchar 1

idxmethod varchar 1

System Catalog Tables Definitions

System Catalog Tables D–5

Table Purpose Column Data
Type

Size

idxname varchar 32

idxorder varchar 1

idxowner varchar 32

idxsegid integer 4

idxseq integer 4

idxtype varchar 1

rssid integer 4

tbl varchar 32

tblowner varchar 32

syssynonyms Contains one entry for
each synonym in the
database.

ispublic smallint 2

screator varchar 32

sname varchar 32

sowner varchar 32

sremdb varchar 32

stbl varchar 32

stblowner varchar 32

systabauth Contains privileges held
by users for tables, views,
and procedures.

alt varchar 1

del varchar 1

exe character 1

grantee varchar 32

grantor varchar 32

ins varchar 1

ndx varchar 1

ref varchar 1

sel varchar 1

tbl varchar 32

tblowner varchar 32

upd varchar 1

System Catalog Tables Definitions

D–6 System Catalog Tables

Table Purpose Column Data
Type

Size

systables Contains one row for each
table in the database.

creator varchar 32

has_ccnstrs varchar 1

has_fcnstrs varchar 1

has_pcnstrs varchar 1

has_ucnstrs varchar 1

id integer 4

owner varchar 32

rssid integer 4

segid integer 4

tbl varchar 32

tbl_status varchar 1

tblpctfree integer 4

tbltype varchar 1

systblspaces No longer used. id integer 4

tsname varchar 32

systblstat Contains table statistics for
each user table.

card integer 4

npages integer 4

pagesz integer 4

recsz integer 4

rssid integer 4

tblid integer 4

sysviews Contains information on
each view in the database.

creator varchar 32

owner varchar 32

seq integer 4

viewname varchar 32

viewtext varchar 2000

System Limits E–1

Appendix E
System Limits

Maximum Values

Table E–1 lists the maximum sizes for various attributes of the ODBC Server
environment.

Table E–1 ODBC Server System Limits

Attribute Name Valu
e

Maximum number of procedure arguments in an SQL
CALL statement

TPE_MAX_PROC_ARGS 50

Maximum length of an SQL statement TPE_MAX_SQLSTMTLEN 35000

Maximum length of a column: standard data types TPE_MAX_FLDLEN 2000

Maximum length of a column: VARBINARY and
VARCHAR specifying the character set designated as
NATIONAL CHARACTER by the underlying storage
system

TPE_EXT_MAX_FLDLEN 32752

Maximum length of default value specification TPE_MAX_DFLT_LEN 250

Maximum length for an identifier (TPE_MAX_IDLEN 32

Maximum length of a connect string TPE_MAX_CONNLEN 100

Maximum length for a user-name in a connect string TPE_UNAME_LEN 32

Maximum number of database connections TPE_MAX_NO_CONN 10

Maximum length of an error message TPE_MAX_ERRLEN 256

Maximum number of columns in a table TPE_MAX_FIELDS 500

Maximum number of index components for a table,
for all indexes on that table

SQL_MAXIDXENTRIES 100

Maximum Values

E–2 System Limits

Attribute Name Valu
e

Maximum length of a CHECK constraint clause SQL_MAXCHKCL_SZ 240

Maximum number of check constraints in a table SQL_MAXCHKCNSTRS 1000

Maximum number of foreign constraints in a table SQL_MAXFRNCNSTRS 1000

Maximum number of nesting levels in an SQL
statement

SQL_MAXLEVELS 25

Maximum number of table references in an SQL
statement: Microsoft Windows

SQL_MAXTBLREF 50

Maximum number of table references in an SQL
statement: other platforms

SQL_MAXTBLREF 250

Maximum size of input parameters for an SQL
statement

SQL_MAXIPARAMS_SZ 512

Maximum number of outer references in an SQL
statement

SQL_MAX_OUTER_REF 25

Maximum nesting level for view references MAX_VIEW_LEVEL 25

Glossary–1

Glossary

add [an ODBC data source]

Make a data source available to ODBC through the Add operation of the ODBC
Administrator utility. Adding a data source tells ODBC where a specific database
resides and which ODBC driver to use to access it. Adding a data source also invokes a
setup dialog box for the particular driver so you can provide other details the driver
needs to connect to the database.

cardinality

Number of rows in a result table.

client

Generally, in client/server systems, the part of the system that sends requests to servers
and processes the results of those requests.

client/server configuration

The version of the Dharma DataLink SDK that implements a network ODBC
architecture. In the client/server configuration, the ODBC tool and a Dharma DataLink
driver runs on Windows, while the ODBC SDK server runs on the UNIX or NT server
hosting the proprietary storage system.

data dictionary

Another term for system catalog.

data source

See ODBC data source

desktop configuration

The version of the Dharma DataLink SDK that implements a “single-tier” ODBC
architecture. In the desktop configuration, the ODBC tool, the Dharma DataLink SDK
software, and the proprietary data all reside on the same Windows computer.

dharma

The default owner name for all system tables in a Dharma database. Users must qualify
references to system tables as dharma.table-name.

Glossary–2

metadata

Data that details the structure of tables and indexes in the proprietary storage system.
The SQL engine stores metadata in the system catalog.

ODBC application

Any program that calls ODBC functions and uses them to issue SQL statements. Many
vendors have added ODBC capabilities to their existing Windows-based tools.

ODBC data source

In ODBC terminology, a specific combination of a database system, the operating system
it uses, and any network software required to access it. Before applications can access a
database through ODBC, you use the ODBC Administrator to add a data source --
register information about the database and an ODBC driver that can connect to it -- for
that database. More than one data source name can refer to the same database, and
deleting a data source does not delete the associated database.

ODBC driver

Vendor-supplied software that processes ODBC function calls for a specific data source.
The driver connects to the data source, translates the standard SQL statements into
syntax the data source can process, and returns data to the application. The Dharma
DataLink SDK includes an ODBC driver that provides access to proprietary storage
systems underlying the ODBC server.

ODBC driver manager

A Microsoft-supplied program that routes calls from an application to the appropriate
ODBC driver for a data source.

ODBC server

The executable that results from building an implementation of the storage interfaces
with the SQL engine library. To get started with the ODBC SDK, you can build an ODBC
Server from the supplied sample implementation of the storage interfaces. Eventually,
you will build an ODBC Server from your own implementation of the storage system to
provide access to a proprietary storage system.

primary key

A subset of the fields in a table, characterized by the constraint that no two records in a
table may have the same primary key value, and that no fields of the primary key may
have a null value. Primary keys are specified in a CREATE TABLE statement.

query expression

The fundamental element in SQL syntax . Query expressions specify a result table
derived from some combination of rows from the tables or views identified in the FROM
clause of the expression. Query expressions are the basis of SELECT, CREATE VIEW,
and INSERT statements

result set

Another term for result table.

Glossary–3

result table

A temporary table of values derived from columns and rows of one or more tables that
meet conditions specified by a query expression.

row identifier

Another term for tuple identifier.

search condition

The SQL syntax element that specifies a condition that is true or false about a given row
or group of rows. Query expressions and UPDATE statements can specify a search
condition. The search condition restricts the number of rows in the result table for the
query expression or UPDATE statement. Search conditions contain one or more
predicates. Search conditions follow the WHERE or HAVING keywords in SQL
statements.

selectivity

The fraction of a table's rows returned by a query.

server

Generally, in client/server systems, the part of the system that receives requests from
clients and responds with results to those requests.

SQL engine

The core component of the Dharma DataLink server. The SQL engine receives requests
from the Dharma DataLink driver, processes them, and returns results.

storage interfaces

C routines called by the SQL engine that access and manipulate data in a proprietary
storage system. A proprietary storage system must implement supplied storage stub
templates to map the storage interfaces to the underlying storage system.

storage manager

A completed implementation of the Dharma DataLink SDK storage interfaces. A storage
manager receives calls from the SQL engine and accesses the underlying proprietary
storage system to retrieve and store data.

storage interfaces

Another term for stub interfaces.

storage system

The proprietary database system that underlies a storage manger. The Dharma
DataLink SDK provides a SQL interface to a storage system through the SQL engine and
its stub interfaces.

stub interfaces

Template routines provided with the Dharma DataLink SDK for implementing access to
proprietary storage systems. Once filled in for a particular storage system, the completed
stubs are called storage managers.

Glossary–4

stubs

Another term for stub interfaces.

system catalog

Tables created by the SQL engine that store information about tables, columns, and
indexes that make up the database. The SQL engine creates and manages the system
catalog independent of the proprietary storage system.

system tables

Another term for system catalog.

tid

Another term for tuple identifier.

transaction

A group of database operations whose changes can be made permanent or undone only
as a unit.

tuple identifier

A unique identifier for a tuple (row) in a table. Storage managers return a tuple identifier
for the tuple that was inserted after an insert operation. The SQL engine passes a tuple
identifier to the delete, update, and fetch stubs to indicate which tuple is affected. The
SQL scalar function ROWID and related functions return tuple identifiers to
applications.

view

A virtual table that recreates the result table specified by a SELECT statement. No data is
stored in a view, but other queries can refer to it as if it were a table containing data
corresponding to the result table it specifies.

Index–1

Index

{
{d }escape clause for ODBC date literals, 4–33
{t }escape clause for ODBC time literals, 4–34
{ts }escape clause for ODBC timestamp literals,

4–34

=
= < > != relational operators, 4–22

A
-a password argument, A–4
ABS scalar function, 4–40
ACOS scalar function, 4–40
Active connections, maximum number, 3–2, 3–9
ADD_MONTHS scalar function, 4–41
Adding ODBC data sources, 2–2

Windows (client/server), 2–3
Aggregate functions, 4–37

AVG, 4–38
COUNT, 4–38
MAX, 4–39
MIN, 4–39
SUM, 4–39

Aliases, 4–14, 4–15, 4–27
column aliases, 4–15

ALL argument to SELECT clause, 4–13
ALTER privilege, 5–21, 5–27
ALTER TABLE clauses, 3–2
AND logical operator, 4–22
Application Programming Interface (API) for

ODBC
supporting all Core and some functions, 3–1
Supporting all Core and some functions, 3–

18
Arithmetic expressions

date, 4–29
numeric, 4–28

Ascending indexes, 5–3
ASCII character set, 4–6, 4–7

ASCII scalar function, 4–41
ASCII_SET character set, 4–7, 4–8
ASIN scalar function, 4–42
ATAN scalar function, 4–42
ATAN2 scalar function, 4–43
AVG aggregate function, 4–38

B
Basic predicates, 4–23

query expressions in, 4–23
BETWEEN predicates, 4–24
BIGINT data type, 3–3
BINARY data type, 3–3, 4–11
BINGINT data type, 4–9
BIT data type, 3–3, 4–11
Bookmarks, 3–2

C
CALL statement, 5–2
Cartesian product, 4–18
CASCADE clause of REVOKE, 5–27
CASE scalar function, 4–43
CASE_INSENSITIVE collation sequence, 4–7
CAST scalar function, 4–46
CEILING scalar function, 4–46
Changing table and view names with

RENAME, 5–26
CHAR data type, 3–3
CHAR scalar function, 4–47
CHARACTER data type, 4–5
Character expressions

concatenated, 4–28
string literals, 4–32

Character sets
ASCII, 4–6
ASCII_SET, 4–7
CASE_INSENSITIVE collation, 4–7
COLLATE clause

in basic predicates, 4–23
in column definitions, 5–7

Index–2

in GROUP BY clause of query expressions,
4–16

in ORDER BY clause of select statements,
5–31

collation, 4–7
default, 4–6
default national character, 4–8
form of use, 4–6
names, 4–5, 4–6
octets, 4–6
repertoire, 4–6
specified by NATIONAL CHARACTER, 4–6
Unicode, 4–6

Character string literals, 4–32
CHARACTER VARYING data type, 4–5
CHARTOROWID scalar function, 4–47
CHR scalar function, 4–48
Clause

ORDER BY, 3–7
COALESCE scalar function, 4–48
COLLATE clause, 4–7

CASE_INSENSITIVE collation sequence, 4–7
in basic predicates, 4–23
in column definitions, 5–7

example, 4–7
in GROUP BY clause of query expressions, 4–

16
in ORDER BY clause of SELECT statements,

5–31
Collations of character sets, 4–7

CASE_INSENSITIVE collation sequence, 4–7
in basic predicates, 4–23
in column definitions, 5–7

example, 4–7
in GROUP BY clause of query expressions, 4–

16
in ORDER BY clause of select statements, 5–

31
Column aliases, 3–3, 4–15
Column constraints in CREATE TABLE, 5–9
Column names, 4–3, 4–14, 4–15, 4–27

aliases in FROM clause, 4–15
in GROUP BY clause of query expressions, 4–

16
in indexes, 5–3
in tables, 5–6
in views, 5–14

Column titles, 4–14
COMMIT operation, 3–6
CONCAT scalar function, 4–49
Concatenated character expressions

with CONCAT function, 4–49
with concatenation operator, 4–28

Conditional expressions, 4–30

CASE, 4–31
COALESCE, 4–31, 4–48
DECODE, 4–31, 4–54
IFNULL, 4–31, 4–57
INSERT, 4–58
NULLIF, 4–31, 4–67
subset of scalar functions, 4–30
summary, 4–30

Constants, 4–31
Constraints

column constraints in CREATE TABLE, 5–9
table constraints in CREATE TABLE, 5–11

CONTAINS predicate, 4–24
Controlling format of date-time values, 4–35
Conventional Identifiers, 4–3
Conventions, viii
Conversion of data types supported, 3–3
CONVERT scalar function

extension, 4–49
ODBC compatible, 4–50

Correlation names, 4–14, 4–15, 4–27
COS scalar function, 4–51
COUNT aggregate function, 4–38
CREATE INDEX statement, 5–3
CREATE SQL statements, support for NOT

NULL clause, 3–10
CREATE SYNONYM statement, 5–5
CREATE TABLE statement, 5–6

column constraints, 5–9
DEFAULT clause, 5–7
table constraints, 5–11

CREATE VIEW statement, 5–14
Creating a data dictionary with mdcreate, A–3
CROSS JOIN syntax, 4–18
CURDATE scalar function, 4–51
CURTIME scalar function, 4–52

D
-d argument to mdcreate, A–3
Data dictionary

creating, A–3
loading, A–4
specifying alternate location for (desktop

only), A–3
Data sources for ODBC, 2–2

adding for Windows (client/server), 2–3
Data sources, adding, 2–2
Data Types, 5–6

allowed in CONTAINS predicates, 4–24
approximate numeric, 4–10
BIGINT, 4–9
BINARY, 4–11
BIT, 4–11

Index–3

bit string, 4–11
CHARACTER, 4–5
CHARACTER VARYING, 4–5
DATE, 4–10
date-time, 4–10
DECIMAL, 4–9
DOUBLE PRECISION, 4–10
FLOAT, 4–10
LONG VARBINARY, 4–12
LONG VARCHAR, 4–6
MONEY, 4–9
NATIONAL CHARACTER, 4–5, 4–6, 4–8
NATIONAL CHARACTER VARYING, 4–6
NUMBER, 4–9
NUMERIC, 4–9
REAL, 4–10
SMALLINT, 4–9
TIME, 4–10
TIMESTAMP, 4–11
TINYINT, 4–9
VARBINARY, 4–11
VARCHAR, 4–5, 4–9

Data types, conversions, 3–3
DATABASE scalar function, 4–52
Date arithmetic expressions, 4–29
DATE data type, 3–3, 4–10
Date format strings, 4–35
Date literals, 4–32

ODBC escape clause, 4–33
Date-time functions, 3–14

ADD_MONTHS, 4–41
CURDATE, 4–51
CURTIME, 4–52
DAYNAME, 4–52
DAYOFMONTH, 4–53
DAYOFWEEK, 4–53
DAYOFYEAR, 4–53
HOUR, 4–57
LAST_DAY, 4–59
MINUTE, 4–64
MONTH, 4–65
MONTHNAME, 4–65
MONTHS_BETWEEN, 4–66
NEXT_DAY, 4–66
NOW, 4–67
QUARTER, 4–70
SECOND, 4–75
SYSDATE, 4–80
SYSTIME, 4–80
SYSTIMESTAMP, 4–80
TIMESTAMPADD, 4–81
TIMESTAMPDIFF, 4–82
TO_CHAR, 4–83

TO_DATE, 4–84
TO_TIME, 4–84
TO_TIMESTAMP, 4–85
WEEK, 4–88
YEAR, 4–88

Date-time literals, 4–32
DAYNAME scalar function, 4–52
DAYOFMONTH scalar function, 4–53
DAYOFWEEK scalar function, 4–53
DAYOFYEAR scalar function, 4–53
DB_NAME scalar function, 4–54
DBA privilege, 5–21, 5–27
DECIMAL data type, 3–3, 4–9
DECODE scalar function, 4–54
Default character set, ASCII, 4–6
DEFAULT clause of CREATE TABLE statement,

5–7
Default national character set, ASCII_SET, 4–8
DEGREES scalar function, 4–55
DELETE privilege, 5–21, 5–27
DELETE statement, 5–16
Delimited identifiers, 3–7, 4–4
Derived tables, 4–15

column aliases for, 4–15
Descending indexes, 5–3
Desktop configuration

specifying alternate location for data
dictionary, A–3

Dharma/SQL ODBC driver
adding data sources for, 2–2

DIFFERENCE scalar function, 4–55
Directory option for mdcreate, A–3
DISTINCT argument to SELECT clause, 4–13
DOUBLE data type, 3–3
DOUBLE PRECISION data type, 4–10
Driver manager, ODBC, 1–2
Driver, ODBC, 1–2
DROP INDEX statement, 5–17
DROP SYNONYM statement, 5–18
DROP TABLE statement, 5–19
DROP VIEW statement, 5–20
Dropping database objects, privileges required

for, 5–21

E
Environment variables

TPE_DATADIR, A–3, A–4
TPEROOT, A–3

Equi-joins, 4–19
Escape clause

{d } for date literals, 4–33
{t } for time literals, 4–34
{ts } for timestamp literals, 4–34

Index–4

in LIKE predicate, 4–25
ODBC for date literals, 4–33
ODBC for time literals, 4–34
ODBC for timestamp literals, 4–34

ESCAPE clause in LIKE predicate, 4–25
Exact numeric data types, 4–8
EXECUTE privilege, 5–21, 5–27
Execute privileges guaranteed, 3–2
EXISTS predicates, 4–25
EXP scalar function, 4–56
Expressions, 4–26

comparing with relational operators, 4–22
concatenated character, 4–28
conditional, 4–30
date arithmetic, 4–29
numeric arithmetic, 4–28

F
FETCH operations, 3–7
fInfoType, 3–2
FLOAT data type, 3–4, 4–10
FLOOR scalar function, 4–56
FOR UPDATE clause of SELECT statement, 5–

31
Form of use of character sets, 4–6
Format strings

date, 4–35
date time values, 4–35
TIME, 4–37
use TO_CHAR function to specify, 4–83

FROM clause, 3–10
FROM clause of query expression, 4–14

{dharma ORDERED}, 4–15
query expressions in, 4–15

FROM user_name clause of REVOKE, 5–27
Functions, 4–37

aggregate functions, 4–37
AVG, 4–38
COUNT, 4–38
MAX, 4–39
MIN, 4–39
SUM, 4–39

List of supported, 3–18
scalar functions, 4–37

ABS, 4–40
ACOS, 4–40
ADD_MONTHS, 4–41
ASCII, 4–41
ASIN, 4–42
ATAN, 4–42
ATAN2, 4–43
CASE, 4–43
CAST, 4–46

CEILING, 4–46
CHAR, 4–47
CHARTOROWID, 4–47
CHR, 4–48
COALESCE, 4–48
CONCAT, 4–49
CONVERT, extension, 4–49
CONVERT, ODBC compatible, 4–50
COS, 4–51
CURDATE, 4–51
CURTIME, 4–52
DATABASE, 4–52
DAYNAME, 4–52
DAYOFMONTH, 4–53
DAYOFWEEK, 4–53
DAYOFYEAR, 4–53
DB_NAME, 4–54
DECODE, 4–54
DEGREES, 4–55
DIFFERENCE, 4–55
EXP, 4–56
FLOOR, 4–56
GREATEST, 4–57
HOUR, 4–57
IFNULL, 4–57
INITCAP, 4–58
INSERT, 4–58
INSTR, 4–59
LAST_DAY, 4–59
LCASE, 4–60
LEAST, 4–60
LEFT, 4–61
LENGTH, 4–61
LOCATE, 4–62
LOG10, 4–62
LOWER, 4–62
LPAD, 4–63
LTRIM, 4–64
MINUTE, 4–64
MOD, 4–64
MONTH, 4–65
MONTHNAME, 4–65
MONTHS_BETWEEN, 4–66
NEXT_DAY, 4–66
NOW, 4–67
NULLIF, 4–67
NVL, 4–67
OBJECT_ID, 4–68
PI, 4–68
POWER, 4–69
PREFIX, 4–69
QUARTER, 4–70
RADIANS, 4–70

Index–5

RAND, 4–71
REPEAT, 4–72
REPLACE, 4–71
RIGHT, 4–71
ROWID, 4–72
ROWIDTOCHAR, 4–73
RPAD, 4–73
RTRIM, 4–74
SECOND, 4–75
SIGN, 4–75
SIN, 4–75
SOUNDEX, 4–76
SPACE, 4–76
SQRT, 4–77
SUBSTR, 4–77
SUBSTRING, 4–78
SUFFIX, 4–78
SUSER_NAME, 4–79
SYSDATE, 4–80
SYSTIME, 4–80
SYSTIMESTAMP, 4–80
TAN, 4–81
TIMESTAMPADD, 4–81
TIMESTAMPDIFF, 4–82
TO_CHAR, 4–83
TO_DATE, 4–84
TO_NUMBER, 4–84
TO_TIME, 4–84
TO_TIMESTAMP, 4–85
TRANSLATE, extension, 4–85
UCASE, 4–86
UID, 4–86
UPPER, 4–87
USER, 4–87
USER_NAME, 4–88
WEEK, 4–88
YEAR, 4–88

SQLGetInfo, 3–1

G
GRANT statement, 5–21
GREATEST scalar function, 4–57
GROUP BY clause, 3–9
GROUP BY clause of query expression, 4–16

H
HAVING clause of query expression, 4–16
HOUR scalar function, 4–57

I
Identifiers, 4–3

conventional, 4–3
delimited, 4–4
row, 4–47, 4–72, 4–73

IFNULL scalar function, 4–57
IN predicates, 4–26

query expressions in, 4–26
Index names, 5–3
INDEX privilege, 5–21, 5–27
Indexes

creating, 5–3
deleting, 5–17

Information type argument to SQLGetInfo
function, 3–1

InfoType values returned to SQLGetInfo, 3–1
INITCAP scalar function, 4–58
Inner joins, 4–18
INSERT privilege, 5–21, 5–27
INSERT scalar function, 4–58
INSERT statement, 5–24

query expressions in, 5–24
INSTR scalar function, 4–59
INTEGER data type, 3–4, 4–9
INTERSECT set operator, 4–17
Isolation levels for transactions, 3–14

J
Joining tables, 4–15, 4–16

aliases, 4–14, 4–15
Cartesian product, 4–18
CROSS JOIN syntax, 4–18
equi-joins, 4–19
inner joins, 4–18
self joins, 4–19
specifying join order explicitly, 4–15
specifying search conditions, 4–18

K
Keywords, B–1
Keywords list, 3–6

L
LAST_DAY scalar function, 4–59
LCASE scalar function, 4–60
LEAST scalar function, 4–60
LEFT scalar function, 4–61
LENGTH scalar function, 4–61
LIKE, 3–8
LIKE predicates, 4–25
Literals, 4–31

character string, 4–32
date, 4–32

Index–6

date-time, 4–32
numeric, 4–31
time, 4–33
timestamp, 4–34

Loading metadata with mdsql, A–4
LOCATE scalar function, 4–62
Lock types, 3–8
LOG10 scalar function, 4–62
Logical operators, 4–22
LONG VARBINARY data type, 4–12
LONG VARCHAR data type, 4–6
LONGVARBINARY data type, 3–4, 3–10
LONGVARCHAR data type, 3–4, 3–10
LOWER scalar function, 4–62
LPAD scalar function, 4–63
LTRIM scalar function, 4–64

M
MAX aggregate function, 4–39
mdcreate, A–3

arguments, A–3
syntax, A–3

mdsql, A–4
-a password argument, A–4
arguments, A–4
-s script_file argument, A–4
syntax, A–4
-u user_name argument, A–4

Metadata
creating dictionary with mdcreate, A–3
loading with mdsql, A–4

Microsoft ODBC, 3–1
MIN aggregate function, 4–39
MINUS set operator, 4–17
MINUTE scalar function, 4–64
MOD scalar function, 4–64
Modifying

table and view names with RENAME, 5–26
MONEY data type, 4–9
MONTH scalar function, 4–65
MONTHNAME scalar function, 4–65
MONTHS_BETWEEN scalar function, 4–66

N
Names

alias, 4–14, 4–15, 4–27
character set, 4–5, 4–6
column, 4–3, 4–14, 4–15, 4–27
column names in indexes, 5–3
column names in views, 5–14
correlation, 4–14, 4–15, 4–27
index, 5–3

schema, 5–32
table, 4–3, 4–14, 4–15, 4–27, 5–6
table names in indexes, 5–3
view, 4–3, 5–14

NATIONAL CHARACTER data type, 4–5
NATIONAL CHARACTER data type, character

set specified by, 4–6, 4–8
NATIONAL CHARACTER VARYING data

type, 4–6
NEXT_DAY scalar function, 4–66
NOT logical operator, 4–22
NOW scalar function, 4–67
NULL predicates, 4–24
NULLIF scalar function, 4–67
NUMBER data type, 4–9
Numeric arithmetic expressions, 4–28
NUMERIC data type, 3–4, 4–9
Numeric data types, 4–8
Numeric literals, 4–31
NVL scalar function, 4–67

O
OBJECT_ID scalar function, 4–68
Octet, 4–6
ODBC

application, 1–2
driver manager, 1–2
drivers, 1–2

ODBC Administrator, 2–2
ODBC data sources, adding, 2–2

Windows (client/server), 2–3
ODBC driver

functions, 3–1
ODBC drivers

for other data sources, 1–2
ODBC escape clause

for date literals, 4–33
for time literals, 4–34
for timestamp literals, 4–34

Open Database Connectivity (ODBC)
administrator utility, 2–2
API functions, 3–11

Operators
concatenation, 4–28
logical, 4–22
relational, 4–22
relational, in quantified predicates, 4–23
set

INTERSECT, 4–17
MINUS, 4–17
UNION, 4–16

OR logical operator, 4–22
ORDER BY clause, 3–7, 3–9

Index–7

ORDER BY clause of SELECT statement, 5–30
Outer join predicates, 4–26
Outer joins, 3–11
Output of date-time values, controlling, 4–35
Overriding join optimizations with {dharma

ORDERED}, 4–15

P
PI scalar function, 4–68
POWER scalar function, 4–69
Precision

of DECIMAL data type, 4–9
of FLOAT data type, 4–10
of MONEY data type, 4–9
of NUMERIC data type, 4–9

Predicates
basic, 4–23
BETWEEN, 4–24
components of search conditions, 4–21
CONTAINS, 4–24
EXISTS, 4–25
IN, 4–26
LIKE, 4–25
NULL, 4–24
outer join, 4–26
quantified, 4–23
relational operators in, 4–22

PREFIX scalar function, 4–69
Privileges

for dropping database objects, 5–21
granting, 5–21
revoking, 5–27

Procedures
changing default qualifier for with SET

SCHEMA, 5–32
granting EXECUTE privilege, 5–21
revoking EXECUTE privilege, 5–27

PUBLIC granting of privileges, 5–21
PUBLIC revoking of privileges, 5–27

Q
Qualifying database object names, 5–32
Quantified predicates, 4–23

query expressions in, 4–23
QUARTER scalar function, 4–70
Query Expressions, 4–12

{dharma ORDERED} clause, 4–15
FROM clause, 4–14
GROUP BY clause, 4–16
HAVING clause, 4–16
in basic predicates, 4–23
in FROM clause of a query expression, 4–15

in IN predicates, 4–26
in INSERT statements, 5–24
in quantified predicates, 4–23
in search conditions, 4–21
in SELECT statements, 5–29
in UPDATE statements, 5–34
INTERSECT clause, 4–17
MINUS clause, 4–17
SELECT clause, 4–13
select list, 4–13
table references, 4–14, 4–15
UNION clause, 4–16
where allowed, 4–12
WHERE clause, 4–15

R
RADIANS scalar function, 4–70
RAND scalar function, 4–71
Read access to all table names, 3–2
Read-only, access limited, 3–6
REAL data type, 3–4, 4–10
REFERENCES privilege, 5–21, 5–27
References to tables in query expressions, 4–14

derived tables, 4–15
explicit, 4–14
joined tables, 4–15

Relational operators, 4–22
in quantified predicates, 4–23

RENAME statement, 5–26
REPEAT scalar function, 4–72
Repertoire of character sets, 4–6
REPLACE scalar function, 4–71
Reserved word list, 3–6
Reserved words, B–1
RESOURCE privilege, 5–21, 5–27
RESTRICT clause of REVOKE, 5–27
Returned values for SQLGetInfo function, 3–1
REVOKE statement, 5–27
RIGHT scalar function, 4–71
ROLLBACK operation, 3–6
Row identifiers

CHARTOROWID function, 4–47, 4–73
ROWID function, 4–72

ROWID scalar function, 4–72
ROWIDTOCHAR scalar function, 4–73
RPAD scalar function, 4–73
RTRIM scalar function, 4–74

S
-s script_file argument, A–4
Scalar expressions. See Expressions
Scalar functions, 4–37

Index–8

ABS, 4–40
ACOS, 4–40
ADD_MONTHS, 4–41
ASCII, 4–41
ASIN, 4–42
ATAN, 4–42
ATAN2, 4–43
CASE, 4–43
CAST, 4–46
CEILING, 4–46
CHAR, 4–47
CHARTOROWID, 4–47
CHR, 4–48
COALESCE, 4–48
CONCAT, 4–49
conditional expressions subset, 4–30
CONVERT, extension, 4–49
CONVERT, ODBC compatible, 4–50
COS, 4–51
CURDATE, 4–51
CURTIME, 4–52
DATABASE, 4–52
DAYNAME, 4–52
DAYOFMONTH, 4–53
DAYOFWEEK, 4–53
DAYOFYEAR, 4–53
DB_NAME, 4–54
DECODE, 4–54
DEGREES, 4–55
DIFFERENCE, 4–55
EXP, 4–56
FLOOR, 4–56
GREATEST, 4–57
HOUR, 4–57
IFNULL, 4–57
INITCAP, 4–58
INSERT, 4–58
INSTR, 4–59
LAST_DAY, 4–59
LCASE, 4–60
LEAST, 4–60
LEFT, 4–61
LENGTH, 4–61
LOCATE, 4–62
LOG10, 4–62
LOWER, 4–62
LPAD, 4–63
LTRIM, 4–64
MINUTE, 4–64
MOD, 4–64
MONTH, 4–65
MONTHNAME, 4–65
MONTHS_BETWEEN, 4–66

NEXT_DAY, 4–66
NOW, 4–67
NULLIF, 4–67
NVL, 4–67
OBJECT_ID, 4–68
PI, 4–68
POWER, 4–69
PREFIX, 4–69
QUARTER, 4–70
RADIANS, 4–70
RAND, 4–71
REPEAT, 4–72
REPLACE, 4–71
RIGHT, 4–71
ROWID, 4–72
ROWIDTOCHAR, 4–73
RPAD, 4–73
RTRIM, 4–74
SECOND, 4–75
SIGN, 4–75
SIN, 4–75
SOUNDEX, 4–76
SPACE, 4–76
SQRT, 4–77
SUBSTR, 4–77
SUBSTRING, 4–78
SUFFIX, 4–78
SUSER_NAME, 4–79
SYSDATE, 4–80
SYSTIME, 4–80
SYSTIMESTAMP, 4–80
TAN, 4–81
TIMESTAMPADD, 4–81
TIMESTAMPDIFF, 4–82
TO_CHAR, 4–83
TO_DATE, 4–84
TO_NUMBER, 4–84
TO_TIME, 4–84
TO_TIMESTAMP, 4–85
TRANSLATE, extension, 4–85
UCASE, 4–86
UID, 4–86
UPPER, 4–87
USER, 4–87
USER_NAME, 4–88
WEEK, 4–88
YEAR, 4–88

Scale
of DECIMAL data type, 4–9
of MONEYdata type, 4–9
of NUMERIC data type, 4–9

Schema
as default table qualifier, 5–32

Index–9

Search conditions, 4–21
contain one or more predicates, 4–21
in HAVING clause of query expressions, 4–

16
in inner joins, 4–18, 4–19
in WHERE clause of query expressions, 4–15

SECOND scalar function, 4–75
SELECT clause of query expression, 4–13
Select list of query expression, 4–13
SELECT privilege, 5–21, 5–27
SELECT SQL statements

maximum number of columns allowed, 3–9
maximum number of tables allowed in FROM

clause, 3–10
relationship between GROUP BY clause and

columns in the select list, 3–7
statements that support positioned

operations, 3–11
whether columns in ORDER BY clause must

also be in select list, 3–11
SELECT statement, 5–29

FOR UPDATE clause, 5–31
ORDER BY clause, 5–30
query expressions in, 5–29

Self joins, 4–19
Set operators

INTERSECT, 4–17
MINUS, 4–17
UNION, 4–16

SET SCHEMA statement, 5–32
SIGN scalar function, 4–75
SIN scalar function, 4–75
SMALLINT data type, 3–5, 4–9
Sorting rows with ORDER BY clause, 5–30
SOUNDEX scalar function, 4–76
SPACE scalar function, 4–76
SQL data types

list of supported, 3–19
SQL keywords, B–1
SQL reserved words, B–1
SQL statements

CREATE, 3–10
SELECT, 3–7

SQLGetInfo function
values returned for, 3–1

SQRT scalar function, 4–77
Stored procedures

changing default qualifier for with SET
SCHEMA, 5–32

granting EXECUTE privilege, 5–21
revoking EXECUTE privilege, 5–27

String literals, 4–32
SUBSTR scalar function, 4–77
SUBSTRING scalar function, 4–78

SUFFIX scalar function, 4–78
SUM aggregate function, 4–39
SUSER_NAME scalar function, 4–79
Synonyms

changing with RENAME, 5–26
creating, 5–5
dropping, 5–18
in FROM clause of query expression, 4–14

Syntax
mdcreate, A–3
mdsql, A–4

SYSDATE scalar function, 4–80
SYSTIME scalar function, 4–80
SYSTIMESTAMP scalar function, 4–80

T
Table constraints in CREATE TABLE, 5–11
Table correlation names, 3–5
Table names, 4–3, 4–14, 4–15, 4–27, 5–6

changing default qualifier for with SET
SCHEMA, 5–32

changing with RENAME, 5–26
in indexes, 5–3

Table references in a query expression, 4–14
derived tables, 4–15
explicit, 4–14
joined tables, 4–15

Table terms, 3–14
Tables

creating, 5–6
deleting, 5–19
derived, 4–15

column aliases for, 4–15
granting privileges for, 5–21
revoking privileges for, 5–27

TAN scalar function, 4–81
TIME data type, 3–5, 4–10
Time format strings, 4–37
Time literals, 4–33

ODBC escape clause, 4–34
TIMESTAMP data type, 3–5, 4–11
Timestamp literals, 4–34

ODBC escape clause, 4–34
TIMESTAMPADD scalar function, 3–14, 4–81
TIMESTAMPDIFF scalar function, 4–82
TINYINT data type, 3–5, 4–9
Titles, for columns in select lists, 4–14
TO user_name clause of GRANT, 5–21
TO_CHAR scalar function, 4–83

specifying date-time format strings in, 4–35
TO_DATE scalar function, 4–84
TO_NUMBER scalar function, 4–84
TO_TIME scalar function, 4–84

Index–10

TO_TIMESTAMP scalar function, 4–85
TPE_DATADIR environment variable, A–3, A–4
TPEROOT environment variable, A–3
Transaction isolation level, 3–6, 3–15
TRANSLATE scalar function

extension, 4–85
Triggers

changing default qualifier for with SET
SCHEMA, 5–32

Trigonometric functions
ACOS, 4–40
ASIN, 4–42
ATAN, 4–42
ATAN2, 4–43
COS, 4–51
SIN, 4–75
TAN, 4–81

TYPE clause of CREATE INDEX, 5–4
required for CONTAINS predicates, 4–24

U
-u user_name argument, A–4
UCASE scalar function, 4–86
UID scalar function, 4–86
Unicode character set, 4–6
UNION set operator, 4–16
UNION support, 3–15
Unique indexes, 5–3
UPDATE privilege, 5–21, 5–27
UPDATE statement, 5–34

query expressions in, 5–34

search conditions in, 4–21
UPPER scalar function, 4–87
USER scalar function, 4–87
USER_NAME scalar function, 4–88

V
-v argument to mdcreate, A–3
Value expressions. See Expressions
Values, specifying default values in CREATE

TABLE statement, 5–7
VARBINARY data type, 3–5, 4–11
VARCHAR data type, 3–5, 4–5
Verbose mode for mdcreate, A–3
View names, 4–3, 5–14

changing default qualifier for with SET
SCHEMA, 5–32

changing with RENAME, 5–26

W
WEEK scalar function, 4–88
WHERE clause of query expression, 4–15
Windows

adding ODBC data sources (client/server), 2–
3

WITH GRANT OPTION clause of GRANT, 5–21

Y
YEAR scalar function, 4–88

