Interacting with external libraries using the CALL statement

Finding the right function – Linux/Unix

One of the most challenging parts of interfacing with an external package is figuring out which functions you need to call.

On a Linux host, you can use the apropos command to locate potential subjects in the online documentation:

[image: image1.png][korry@devo: /home/korry/conf [-[o1x]
Fie Edit View Options Transfer Sciipt Window Help

D@ eR EeQ e8| &R e

RANDON(3) Linux Progranner”s Manual RANDOM 3.

o
randon, srandon. initstate, sststate - randon nunber generator,

svnoPsIS
*include <stdlib.h>

Long int. randos (void):
void srando (unsigned int. seed):

char xinitstate(unsigned int seed. char *state. int n):
char xsetstate(char *stata):

DESCRIPTION
The random() function uses a nan-Linear additive Feedback random number generator employ-
ing a default table of size 31 long integers to return successive pseudo—randon nunbers
in the range fron 0 to RANDMAX, The pericd of this random nunber generator is very
large. spproxinately 16%((2ex31)-1),

The srandom() function sets its argunent as the seed for a new sequence of pseudo-randos
integers to be returned by random(), These sequences are repeatable by calling srandom()
uith the sane seed value, If no seed value is provided, the random() function is auto-
natically seeded uith a valus of 1,

The initstate() function allous a state array state to be initialized for use by ran-
dom(), The size of the state array 0 is used by initstate() to decide how sophisticated
a random number generator it should use —— the Larger the state array. the better the
randon nunbers uill be. seed is the seed for the initialization. uhich specifies a
starting point For the randon nunber sequence, and provides for restarting at the sane
point,

The setstate() function changes the state array used by the random() function, The state

The Unix/Linux man pages are divided into sections. User commands are listed in section 1. API functions are listed in sections 2 and 3, so we can ignore most of the entries above.

Let's choose the random() function from section 3. You can view the manual page for this function by using the command: $ man 3 random
[image: image2.png][korry@devo: /home/korry/conf [-[o1x]
Fie Edit View Options Transfer Sciipt Window Help

D@ eR EeQ e8| &R e

Tkorry@deva conf1% apropos randon
drandds (3) - generate unifornly distributed pseudo-randon nunbers
eranddf [drandd8] (3) - generate unifornly distributed pseudo-randan nunbers
Fartune (6) = print a randon, hopefully interesting. adage
initstate Crandon] (3) - randam number ceneratar

jranddS [drandd8] (3) - generate unifornly distributed pseudo-randan nubers
lcongds [drandd8] (3) - generate unifornly distributed pseudo-randan nubers
Lrandds [drandd8] (3) - generate unifornly distributed pseudo-randan nubers
wranddS [drandd8] (3) - generate unifornly distributed pseudo-randan nubers
nranddS [drandd8] (3) - generate unifornly distributed pseudo-randan nunbers

enshift (1) - Shift lines of a portable pixnap Left or right by a randon anount
ppnspread (1) - displace a portable pixnap’s pixels by a randon anount

rand (1) - generats pseudo-randon btes

rand 3) - randon nunber generator

rancion G} = randon nuber gensrator

rarcion @) - kernel randon number source devices

seecdf [drancdB] (3) - generate unifornly distributed pseudo-randon numbers

setstate [randon) (3) - random number seneratar

rand [rand) 3) - randon nunber generator

srandds Ldrandd@) (3) - generate unifornly distributed pseudo-randon numbers

srandon [randon] (3) - random number seneratar

strfile (1) - create a randon access File for storing strings

strfile Cunstr] (1) - create a randon access File for storing strings

strfry G) - randanize a string

Urandon [randon] (4) - kernel randon rusber source devices

braid (1) = draus randon color—cycling braids around a circle

erevetic (1) = drav randon stippled/color rectangles

naze (1) - an autonated X1L deno repeatedly creating and soling a randon naze
Viduhacker (1) - grab insges and apply randon filters to then |
uebrallage (1) - decorate the scresn vith randon inages fron the ueb

[korru@devo confls |

The documentation for this function tells us most of what we need to know to call this function from within Appx. Most importantly, we can see the data types required.

Here is a table showing the most commonly encountered data types and how they correspond to Appx data types:

	Int
	S9(10), binary

	Short
	S9(5), binary, GE –32768 and LE 32767

	Char
	S9(3), binary, GE –128 and LE 127

	long int
	Same as int

	unsigned int
	9(10),binary

	unsigned short
	9(5), binary, GE 0 and LE 65535

	unsigned char
	9(3), binary, GE 0 and LE 255

	pointer (*)
	S9(10), binary

	Void
	no arguments, no return values

	
	

So, you can see that the srandom() function requires an unsigned int as it's only argument, and since it returns a void, it won't give us back anything meaningful.

The random() function doesn't expect any function arguments and returns us a long int. The return value from a function always comes back in the --- RETURN CODE PDF.

If you are going to call a C function from within your application, I recommend building a set of Domains for the commonly used data types. You might create data types named "INT", "CHAR", "POINTER", etc..

At this point, you know which function you want to call, the argument list for the function, and the type of return value.

The next step is finding the function. In Linux (and Unix) systems, most API functions are contained in a shared library - Appx can only CALL functions that exist in a shared library (unless you relink the engine). Most shared libraries exist in the /lib or /usr/lib directories. If you are trying to CALL a function defined in a vendor supplied library (such as Oracle or Sybase), consult the vendor's documentation.

Finding the correct library involves a bit of detective work. There are a few tricks that make the task easier. First, notice that the man page for this function starts with "#include <stdlib.h>". That's a pretty good clue that this function is part of the standard C runtime library. If the man page had started with "#include <math.h>", the function would probably exist in the math library. So, looking at the man page gives you a clue about which package the function belongs to, but how do you find the actual library name?

Most of the standard Unix commands (such as ls, cat, bash, etc.) are written in C and linked against the standard C runtime library. Using the ldd command, you find the names of the shared libraries that a given program is linked to:

[image: image3.png]2 korry@devo: fusr/i
File Edit View Options Transfer Sciipt Window Help

[_[CIx]

D@ eR EeQ e8| &R e

Tkorru@deva 1ib1% ldd /bin/bash
Libterncap.s0.2 => /Lib/Libterncap.sa.2 (0x40015000)
Libc,s0.6 => /Lib/Libe,so.6 (0xd0020000)

/Lib/1d Tinix.50.2 =5 /Lib/ld-linx.s0.2 (0xd0000000)

Ckorry@devo 1ibls I

You can see that the /bin/bash program is linked against three shared libraries:

/lib/libtermcap.so.2

/lib/libc.so.6

/lib/ld-linux.so.2

One of these is probably the C runtime library – you can guess that it is /lib/libc.so.6. We can now use the nm command to get a list of the functions exported by this library:

The /lib/libc.so.6 library does indeed include a function named random()[image: image4.png]2 korry@devo: fusr/i
File Edit View Options Transfer Sciipt Window Help

D@ eR EeQ e8| &R e

Tkorrgidevo 113 rm /1ib/1ibe,s0,6 | grep rando

[_[CIx]

00021584 £ __randan
00021660 £ __randan_r
00001808 T __res_randanid
00021820 £ _srandan
00021210 £ __srandan_r
00021884 W Fandan

00063320 r randan_poly_infa
00021660 K randan_r
00021820 W srandan
00021210 W srandan_r

Ckorry@devo 1ibls I

, let's call that function from within an Appx process. Here is a simple subroutine that will return a random number between 0 and 9 (inclusive).

GET RANDOM NUMBER (Subroutine)

 RECEIVE --- RI FIELD FAIL N

 *

 CALL /lib/libc.so.6,random RESIDENT? N END? N FAIL 0

 SET --- RI = --- RETURN CODE

 CALC RI = @MOD(RI,10)

You can see that this function RECEIVE's a single parameter – a numeric field. When you call this function, you should PASS (shared) a single numeric field and GET RANDOM NUMBER will return a value into that field:

 PASS KAD PRES KEY FIELD SHARE? Y

 GOSUB GET RANDOM NUMBER

Finding the right function – Windows

Now let's see how to find and CALL a function on a Windows host. This time around, we'll tackle a slightly large problem. We want to download an HTML file, from a Web server, into an Appx application.

The WIN32 API provides a set of functions that we can use to deal with the Internet. You can find Windows API documentation at http://msdn.microsoft.com. Here is the manual entry for the InternetOpen() function:

InternetOpen Function

--

Initializes an application's use of the Microsoft® Win32® Internet functions.

Syntax

HINTERNET InternetOpen(

 IN LPCTSTR lpszAgent,

 IN DWORD dwAccessType,

 IN LPCTSTR lpszProxyName,

 IN LPCTSTR lpszProxyBypass,

 IN DWORD dwFlags

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

lpszAgent

Address of a string variable that contains the name of the application or entity calling the Internet functions (for example, Microsoft® Internet Explorer). This name is used as the user agent in the HTTP protocol.

dwAccessType

Type of access required. This can be one of the following values:

INTERNET_OPEN_TYPE_DIRECT

Resolves all host names locally.

INTERNET_OPEN_TYPE_PRECONFIG

Retrieves the proxy or direct configuration from the registry.

INTERNET_OPEN_TYPE_PRECONFIG_WITH_NO_AUTOPROXY

Retrieves the proxy or direct configuration from the registry and prevents the use of a startup Microsoft® JScript® (compatible with ECMA 262 language specification) or Internet Setup (INS) file.

INTERNET_OPEN_TYPE_PROXY

Passes requests to the proxy unless a proxy bypass list is supplied and the name to be resolved bypasses the proxy. In this case, the function uses INTERNET_OPEN_TYPE_DIRECT.

lpszProxyName

Address of a string variable that contains the name of the proxy server(s) to use when proxy access is specified by setting dwAccessType to INTERNET_OPEN_TYPE_PROXY. Do not use an empty string, because InternetOpen will use it as the proxy name. The Win32 Internet functions recognize only CERN type proxies (HTTP only) and the TIS FTP gateway (FTP only). If Internet Explorer is installed, the Win32 Internet functions also support SOCKS proxies. FTP and Gopher requests can be made through a CERN type proxy either by changing them to an HTTP request or by using InternetOpenUrl. If dwAccessType is not set to INTERNET_OPEN_TYPE_PROXY, this parameter is ignored and should be set to NULL. For more information about listing proxy servers, see the Listing Proxy Servers section of Enabling Internet Functionality.

lpszProxyBypass

Address of a string variable that contains an optional list of host names or IP addresses, or both, that should not be routed through the proxy when dwAccessType is set to INTERNET_OPEN_TYPE_PROXY. The list can contain wildcards. Do not use an empty string, because InternetOpen will use it as the proxy bypass list. If this parameter specifies the "<local>" macro as the only entry, the function bypasses any host name that does not contain a period. If dwAccessType is not set to INTERNET_OPEN_TYPE_PROXY, this parameter is ignored and should be set to NULL.

dwFlags

Unsigned long integer value that contains the flags that indicate various options affecting the behavior of the function. This can be a combination of these values:

INTERNET_FLAG_ASYNC

INTERNET_FLAG_FROM_CACHE

INTERNET_FLAG_OFFLINE

Return Value

Returns a valid handle that the application passes to subsequent Win32 Internet functions. If InternetOpen fails, it returns NULL. To retrieve a specific error message, call GetLastError.

Remarks

InternetOpen is the first Win32 Internet function called by an application. It tells the Internet DLL to initialize internal data structures and prepare for future calls from the application. When the application finishes using the Internet functions, it should call InternetCloseHandle to free the handle and any associated resources.

The application can make any number of calls to InternetOpen, though a single call is normally sufficient. The application might need to define separate behaviors for each InternetOpen instance, such as different proxy servers configured for each.

After the calling application has finished using the HINTERNET handle returned by InternetOpen, it must be closed using the InternetCloseHandle function.

Function Information

Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header

Wininet.h

Import library
Wininet.lib

Minimum availability Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

Windows CE Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview, Enabling Internet Functionality, Microsoft Win32 Internet Functions Reference, General Win32 Internet Functions

Finding the correct library is pretty easy in the Windows environment – the information you need you need is right there in the documentation:

Import library
Wininet.lib

We will actually find the InternetOpen() function in Wininet.dll. But, there is one more wrinkle here – Wininet.dll actually contains two copies of InternetOpen() – an ASCII version and a Unicode (or wide-character) version. You can use the Quickview program to view the function names within a DLL:

[image: image5.png]| 5 APPX - invoke:8060 [-[o1x]
FileOptions _Help

LRl N =R

INTERNETOPEN Subroutine (Subroutine)
. Internetopen(}
. 1 - A shared INT that will receive the HINTERWET handle
CEIVE --- RETURN CODE F1Emp FAIn 1
ser - Tawe 32 =
eass - e 32 F1Emp smarer T
sosus
Pass - TaMR 32 F1Emp smarer 1
pass xap zmRo F1EmD [
Pass xap wum F1EmD [
Pass xap wom F1EmD [
Pass xap zmRo F1EmD [
CALL KAD *INTERNETOPEN RESIDENT? N END? N FAIL O
[END]
Tooloox Move Cony Search Replace Xcopy

KAD KADDD | Chg

You can see from the manual entry that this function requires five parameters (lpszAgent, dwAccessType, lpszProxyName, lpszProxyBypass, and dwFlags).

Microsoft uses an unusual naming convention, here is a quick explanation:

lp means that the function is expecting a pointer to something

lpsz means that you should PASS a pointer to a NULL-terminated string (I'll show you how to do that in a moment).

dw means that you should PASS a double-word (also known an integer)

lpdw would mean that you should PASS a pointer to a double-word

When we call this function, we will only provide a real value for the first parameter (lpszAgent) – for the remaining parameters, we want to use the default behavior and will PASS zero or NULL as appropriate.

This function returns a handle. A handle is just an integer that we get from the API and that we give back to the API whenever we want to do something useful. In this example, we'll open an Internet handle (an HINTERNET) and we'll give that handle back to Windows when we want to open a URL. When we open a URL, we get back a second handle. We'll give the second handle to the InternetReadFile() function and it will read the content associated with that handle into an Appx field.

Most of the C API's work with NULL-terminated strings. To make one of these, we just APPEND a null-byte (a character with the value 0) to the end of an Appx alpha field. I'll define a subroutine a little later that will do the work for us.

Before we go much further, let's define a few domains and work fields that we'll find handy.

I'll define three domains:

	POINTER
	Numeric, 9(10), binary

	INT
	Numeric, 9(10),binary

	FUNCTION NAME
	Alpha, X(60), lower-case allowed

And I'll define the following work fields:

	Work Field Name
	Domain
	Default Value

	ZERO
	INT
	0

	NULL
	POINTER
	0

	*INTERNETOPEN
	FUNCTION NAME
	Wininet.dll,InternetOpenA

	*INTERNETOPENURL
	FUNCTION NAME
	Wininet.dll,InternetOpenUrlA

	*INTERNETREADFILE
	FUNCTION NAME
	Wininet.dll,InternetReadFileA

	WORK HTML TEXT
	TEXT X(1920)
	

[image: image6.png]| 5 APPX - invoke:8060 [-[o1x]
FileOptions _Help

LRl N =R

NULL TERMINATE Subroutine (Subroutine)
. [r——
. Ihis subroutine expects one paramete
* 1 - The buffer to NULL-terminate (shared)
RecEIvE - TEWP 512 e e
RecEIvE - Tme 1 e e
cwv pn o Teme 1 S
AeeEm - TEE S12 0
[END]
I zoobo ove comy gearcn epace Kooy

KAD KADDO | Ing

Now, we can define a few subroutines to call the required functions. First, we will need a subroutine to call the InternetOpen() function:

[image: image7.png]PPX - invoke:8060 [-[o[x]
FileOptions _Help

P

INTERNETOPENURL Subroutine (Subroutine)
- This subroutine expects you to PASS three paremeters
. L - & handle returned by INTERNETOPEN
. 2 - A place to put the new handle
. 3 - The URE that you want to open
[P1enp B w
RECEIVE -~ RETURN cobE P1emp B w
| JR—————t P1emp B w
s u—_— P1emp smer 1
cosup R ——
[V —— F1emp [
mss - mwe S22 P1emp cnze 1
[V p— P1emp cnze 1
Bt zEvo P1emp cnze 1
Bt zERo P1emp cnze 1
[V ——— P1emp cnze 1
cmn K +nmERETOPENURE RESIDENT? N EWD? N PAIL O
[END]
Tootbox e cony goach | Roplace yoony |

[kaD | KADOD | Chy

You can see that I am calling a subroutine named NULL TERMINATE – let's look at that one next:

[image: image8.png]PPX - invoke:8060 [-[o[x]
FileOptions _Help

P

INTERNETRERDLE Subroutne (Subrou
* InternetReadFile ()
. Ihis subroutine expects thres paraveters:
. 1 - % handle returned by InternetopentRE()
* 2 - A buffer to hold the retreived content (shared)
. 3 - he lengeh of the buffer (shared)
Pecerve - ux F1emp B w
RECEIVE - TEMP 32K P1emp B w
RECEIVE - AT P1emp B w
[V —— F1emp [
mss - mwe 32k P1emp cne? 1
mss - Az P1emp crnze 1
mss - Az P1emp cne? 1
cmn KD *INTERWETREADPILE RESIDENT? N EWD? N PAIL O
[END]
Tootbox e cony goach | Roplace yoony |

[kaD | KADOD | Chy

Now let's look at the next function – this one will receive a URL, open it, and return a handle that can be used to retrieve the contents of the URL:

Next, here is the subroutine that reads the contents of a URL into a field:

[image: image9.png]| £ APPX - invoke:8060

File Options _Help

LRl N =R

[_[CIx]

[READ URL Subroutine (Subroutine)

RECEIVE - TEMP 132) AL 1
RECEIVE --- TEMP 2K F1EmD FAIn 1
[R— F1Emp smarer T
sosus

[R— F1Emp smarer 1
eass v F1EmD smaRE? T
Pass - TEwp 132 F1EmD [
sosus

ErR—— 2088

[R—" F1Emp smarer 1
Pass - TEwE 2K F1EmD smaRE? T
[R F1EmD smarE? T
sosus

Tooloox Move Cony Search Replace Xcopy

KAD KADDD | Chg

Finally, here is the subroutine that ties all this together. You pass two parameters to this subroutine: the URL that you want to read, and a buffer to hold the content (shared):

[image: image10.png]et di [-[o[x]
Eile View Help

ISIREN=]

0096 0003fe85 InternetGetCookieExA

0097 0003a7b7 InternetGetCookieEx\y

0098 0003a7b7 InternetGetCookieVy

0099 0003a32e InternetGetl astResponselnfos

009a 0005816¢ InternetGetl astResponselnfoly

009b 000581de InternetGetPerSiteCookieDecisionA

009¢c 0006basg4 InternetGetPerSiteCookieDecisionW

009d 0003f11d InternetGoOnline:

009 0003fac1 InternetGoOnlineA

009f 00043faa InternetGoOnlineWy L]

00a0 0003e85¢ InternetHangUp

00a1l 0003e85¢ InternetinitializeAutoProxy Dl

00a2 00026510 Internetl ockRequestFile

00a3 0003a230 InternetOpené

00a4 0003a230 InternetOpenUr&,

00a5 00026524 InternetOpenUrivy

00a6 00059057 InternetOpeny’

00a7 00058c0e InternetQueryDatalvailable

00a8 00058ech InternetQueryFortezzaStatus

00a9 000590de InternetQueryOptionA

00aa 00036916 InternetQueryOptionyy

00ab 0004073b InternetReadFile

00ac 000585bf InternetReadFileExA

00ad 00058609 InternetReadFileExyV

00ae 0003218 InternetSecurityProtocolToString4
F—ee AN Ana0 b o ity D b AT A AL
To edit click Open Fil for Editing on the File menu

